TECHNOLOGY Britannica Illustrated Science Library ### About the pagination of this eBook Due to the unique page numbering scheme of this book, the electronic pagination of the eBook does not match the pagination of the printed version. To navigate the text, please use the electronic Table of Contents that appears alongside the eBook or the Search function. For citation purposes, use the page numbers that appear in the text. # **TECHNOLOGY** # Britannica Illustrated Science Library Encyclopædia Britannica, Inc. Chicago - London - New Delhi - Paris - Seoul - Sydney - Taipei - Tokyo ### **Britannica Illustrated** Science Library ### © 2008 Editorial Sol 90 All rights reserved. Idea and Concept of This Work: Editorial Sol 90 Project Management: Fabián Cassan Photo Credits: Corbis **Composition and Pre-press Services:** Editorial Sol 90 **Translation Services and Index:** Publication Services. Inc. ### Portions © 2008 Encyclopædia Britannica, Inc. Encyclopædia Britannica, Britannica, and the thistle logo are registered trademarks of Encyclopædia Britannica, Inc. ### **Britannica Illustrated Science Library Staff** ### **Editorial** Michael Levy, Executive Editor, Core Editorial John Rafferty, Associate Editor, Earth Sciences William L. Hosch, Associate Editor, Mathematics and Computers Kara Rogers, Associate Editor, Life Sciences Rob Curley, Senior Editor, Science and Technology David Hayes, Special Projects Editor ### **Art and Composition** Steven N. Kapusta, Director Carol A. Gaines, Composition Supervisor Christine McCabe, Senior Illustrator ### **Media Acquisition** Kathy Nakamura, Manager ### **Copy Department** Sylvia Wallace, Director Julian Ronning, Supervisor ### **Information Management and Retrieval** Sheila Vasich, Information Architect ### **Production Control** Marilyn L. Barton ### **Manufacturing** Kim Gerber, Director ### Encyclopædia Britannica, Inc. Jacob E. Safra, Chairman of the Board Jorge Aguilar-Cauz, President Michael Ross, Senior Vice President, Corporate Development Dale H. Hoiberg, Senior Vice President and Editor Marsha Mackenzie, Director of Production International Standard Book Number (set): 978-1-59339-797-5 International Standard Book Number (volume): 978-1-59339-812-5 Britannica Illustrated Science Library: Technology 2008 Printed in China www.britannica.com # Contents ### **NANOROBOT** Microscopic device that is formed by arms scarcely 10 nanometers in length. In the photograph, it is shown transporting a drug through the interior of an infected cell. # An Endless Inventiveness any animal species use tools, and some, such as crows and apes, can even create them. But only our species has taken this ability to such an extreme that it can be said that we maintain an evolutionary symbiosis with these tools. In other words, our ability to develop complex tools increased our intelligence, allowing us to manufacture even more complex tools. This, in turn, launched a new phase in this cycle, and after several million years it finally led to the modern human, who continues to develop tools that will likely continue to transform the species. Of course, this history has not always followed a linear path. In the 9.000 years since humans discovered agriculture and cattle farming, many inventions were discovered many times and forgotten nearly as many times. Today we are surprised to learn that the Romans knew about concrete and that they had taxis and hamburger stands or that the Greeks developed the basic principles of the locomotive and the steam engine (although, oddly enough, they never combined the two to invent the railroad). We have developed the most absurd theories to explain the construction of the pyramids in Egypt or the moai of Easter Island. This winding history, with steps forward and steps backward, can be explained thus: technical inventions are a specific response to the specific needs of a given human group, and when these needs or the people who needed to meet those needs disappear or change, the inventions associated with them also disappear or change. few centuries ago, the creative ability of human beings took a major leap forward when tools associated with craft and empirical techniques began to complement science, thus systematizing the methods of production. This is how modern technology emerged, allowing improved preservation not just of know-how but also of the economic, social, and cultural aspects involving this know-how. Once tool making ceased to be something that was passed on from master craftsman to apprentice and became an organized set of procedures and knowledge accessible to a specialized community, the human ability to invent new tools underwent an explosion similar to the one it experienced 9,000 years earlier. Virtually overnight thousands of objects appeared (and would continue to appear) that changed our way of seeing and understanding the world—the clock, which allowed us to divide time and set a new pace for our lives; the printing press, which allowed knowledge to be spread beyond a privileged few; the refrigerator, which enriched and diversified our nutrition practices; the cinema, which opened up the possibility of dreaming while awake; the Internet, which erased borders and distances; and robotics and artificial intelligence, which led us to question our definition of being human. With the emergence of technology, you could say that our lives are surrounded by marvelous objects. his book takes us on a journey through some of the inventions that have changed our everyday habits and our understanding of the world that surrounds us. It is not meant to provide a thorough or definitive view. The creative abilities of human beings will always make such a task incomplete. Here we look at the revolutionary technologies that mark milestones in the development of technology. We also examine inventions that have become so essential in our daily lives that it is difficult to imagine the way the world was prior to their existence. We look at technologies that have lengthened our life expectancy and improved our health. We also explore inventions that are just now beginning to show their potential and are opening up worlds that not even the most imaginative science-fiction authors could have foreseen. It is surprising to see the degree to which many of these technologies are related, like a rich tapestry of invention and creativity that make us grow as a species, expand our culture, satisfy our needs, and shape us as a society. # Daily-Life Applications LIVE TV Thanks to television we can watch events as they happen like this girl who is watching the liftoff of Soyuz 9 in 1975 THE iPOD 8-9 LCDs 10-11 3-D MOVIES 12-13 THE DVD 14-15 NINTENDO WII 16-17 THE DIGITAL CAMERA 18-19 VIDEO 20-21 MICROWAVES 22-23 SCANNERS 24-25 ATHLETIC SHOES 26-27 echnology has been an integral part of our daily lives for several decades now, drastically affecting us in many positive ways. Liquid crystal displays (LCD) form a part of a plethora of industrial and consumer appliances, such as automated teller machines, home appliances, television equipment, and computers. The scanner, calculator, and fax revolutionized the worlds of work and study, and photography, the DVD, and the camcorder allowed us to stop time and save unique moments forever. Our daily lives are altered by technology. We see it wherever we look; it offers us the things we have always sought: comfort, entertainment, and the tools to make our daily tasks easier. • # The iPod his fifth-generation, sophisticated multimedia player, introduced by Apple in 2001, currently lets users store and play up to 80 GB of music, video, and images, encoded in many formats; it also allows them to transfer information from both Mac and PC computers. The iPod can download new files from iTunes, an exchange software developed by Apple. This software serves as a complex data manager, allowing customers to purchase files from a library of more than 3 million songs and 3,000 videos. ### **Endless Entertainment** One of the most notable features of a size slightly larger than the palm of a the attractively designed iPod is its person's hand, users can store up to 80 ability to store high-fidelity recordings. In GB of data. ### Music The iPod can store more than 20,000 songs in its 80 GB version (and up to 7,000 songs in its 30 GB version). ### Video The 80 GB version can store and play more than 100 hours of video in various file formats. ### Games The iPod comes with four games, but it is possible to download a large number of games from iTunes. ### **Images** 9:42 AM Stores more than 25,000 images. Plugged into a home theater system, it can display the images with musical accompaniment on a large screen. ### 2.4 inches (6.1 cm) ### **Evolution** Since its launch in 2001, the iPod has become smaller, lighter, and more efficient. It now has a color screen, and its maximum storage capacity is 16 times greater than the first model. The iPod spawned a flourishing business in accessories, and it has become a symbol of an entire generation. Today it is the most popular portable multimedia player. 5G iPod iPod Touch A touch screen in full color with access to YouTube # **Complexity in a Small Container** The interior of a 2 GB iPod Nano illustrates the complexity of this multimedia player. Chips, Battery -Flash circuits, plates, ports, and even a thin liquid crystal display fit into a space only 3.5 x 1.5 inches (9 x 4 cm). LCD-TFT screen (in this 1.5 inch [3.8 cm] model) # Contacts Each time the iPod connects with a computer, it uses its address book and its calendar, one of its most useful applications. ### FOR SPORTS ENTHUSIASTS The partnership between Apple and Nike resulted in an iPod that an exercise regimen, even as it monitors performance variables, provides the athlete with preprogrammed music to accompany such as pace, speed, distance covered, and calories burned. While enjoying music chosen for its beat, the user receives a
performance report, which is stored in the iPod for reference. The first version of the iPod held 5 GB of information. Mini iPod Up to 6 GB capacity. Discontinued. U2 iPod This model was launched in partnership with the band iPod Nano The successor of the iPod mini. Smaller and lighter, with a U2 and Universal Music Group. color screen. Holds up to 8 GB. iPod Shuffle The smallest model, it weighs only 0.5 ounce (15 and has no screen. Holds up to 80 GB; 2.5-inch (6.3-cm) color screen. 10 DAILY-LIFE APPLICATIONS ### LCDs THE IMAGE s formed by hundreds of thousands of points of light called pixels. The color and intensity of each pixel is controlled by the combined brightness of the red, blue, and green subpixels. he technology used in the displays of small cell phones and laptops is based on the use of liquid crystals—a discovery dating back to the 19th century. This technology has been applied to television sets, causing a revolution in terms of size and image quality. LCD televisions are flatter and lighter than conventional sets and need less power to operate. The Path of the Light Inside an LCD screen, white light is turned into a TV environmental point of view, LCD screens emit almost no image with the help of polarizers, microscopic crystals, electromagnetic radiation, and their energy consumption can and color filters. Much of the process depends on technology be less than 60 percent of what the cathode-ray tube of a that orients the light rays in a precise manner. From an conventional television set requires. **INSIDE THE** 3 Thin-film **Source 2** First polarizer **SCREEN** transistor (TFT) arranges the white sends white light, the waves of which naturally disperse in light in a series of A thin film of crystal, **LED BULBS** all directions. vertical rays. covered in microscopic State-of-the-art transistors, which acts screens use diodes. according to the TV signal, which emit red, sending instructions for green, and blue light. crystal positioning. Together these colors Size in inches of form a powerful the largest LCD TV white light that replaces traditional screen in the world. The screen, fluorescent tubes. 7.8 feet (2.4 m) wide by 4.4 feet **DIFFUSER** (1.35 m) high, has controls brightness 2.07 million pixels. and softens the light. Passive crystal 30 Full-intensity **CIRCUITS** is the times per second convert the TV signal that the entire process into electric repeats itself. The instructions for the speed is doubled in a liquid crystal to use in high-definition TV. forming the image on the screen. 4 Liquid crystal LIQUID CRYSTAL Hundreds of thousands of Discovered at the end of **Color filters** microscopic crystals Antiglare the 19th century, liquid oriented according to the The white light waves crystals share **6** Second polarizer twisted by the "instructions" given by the characteristics of both filters the light waves in a horizontal TFT, they interfere with crystals are solids and liquids. Their direction. The brightness of the subpixels light waves and twist transformed into red, molecules can have a varies depending on the direction given them in specific directions. green, and blue waves. specific crystalline the light waves by the liquid crystal. structure—which is characteristic of solidsbut still have some freedom Light Intensity How the of movement. In LCDs, crystals can be oriented by The crystals are mad to twist the rays of light. The light's final **Crystals Act** electric impulses while staying in place. brightness depends or how horizontal the Full intensity 12 DAILY-LIFE APPLICATIONS **TECHNOLOGY 13** # 3-D Movies he recent appearance of 3-D movie theaters with IMAX technology put the public in touch with new ideas in cinematography. The images' high resolution and large size (exceeding human peripheral vision), combined with high-quality sound and three-dimensional effects, attempt to immerse viewers within a movie. At first, only documentary films were shown in these theaters, because special filming systems were required. However, in recent years, more and more commercial films have been produced in this format. ### The Theater IMAX movie-projection rooms are characterized their high-quality sound. These two elements, combined with 3-D effects, immerse viewers in the movie is the average weight of an IMAX film reel. Operators must handle them with cranes. has two lenses whose images converge on the screen. Two 15,000-watt lamps are necessary to light such a large screen. Separated into six chani and one subwoofer, for ealistic audio The two reels display the same movie, from two slightly divergent angles, imitating the human field of vision. They are ### **Filming for IMAX** To achieve 3-D effects, two cameras are used in IMAX filming. Each camera corresponds to a different eye, with the angle of separation reproducing the angle of separation between human eyes. cameras cannot be used to resolve the ### The 3-D Effect uses two lenses to converge images on the screen. Each lens corresponds to the angle of vision of one of the eyes, and each projection is polarized at an angle perpendicular to the other. image at an angle The eyeglasses used by viewers have corresponding to those of the Thus, during the projection of the movie, the polarizers of each eye allow the corresponding image through, blocking the image intended ATTERNATION AND ADDRESS OF THE PARTY ministration of the contraction of ### **Comparison with** 35-mm Movies The greatest achievement of IMAX theater in comparison to traditional movie theaters is the size and quality of the images projected, combined with the sound system and 3-D effects. ### THE SCREEN These are the largest screens in the movie industry. They are more than 65 feet (20 m) wide, and the high-resolution projection produces excellent image quality. Because they surpass the normal range of human peripheral vision, viewers feel completely immersed in the film. ### THE FILM Each frame measures 1.9 by 2.7 inches (50 by 70 mm) and has 15 perforations. In other words, it has 10 times the surface area of the 35-mm film used in traditional projections. Each image corresponds to two frames filmed from slightly different angles, producing a 3-D effect. Unlike conventional movies, the film moves through the projector horizontally and at much greater speed. ### **Projection Theaters** IMAX technology allows for two types of theaters: the traditional type with a large, flat screen, and dome-shaped rooms, in which the projection extends to the sides and ceiling. **14** DAILY-LIFE APPLICATIONS **TECHNOLOGY 15** # The DVD he storage capacity of a DVD, six times that of a traditional CD, has revolutionized the way digital data is organized and stored in the decade since its appearance in 1997. The DVD explosion resounded in the world of home movies thanks to its capability of storing entire feature films, bonus material, and subtitles (in various languages) on only one disc. The evolution of technology, however, has not stopped with DVDs. Recent years have seen the introduction of discs able to hold 12 times the data of the DVD. ### **Reading with Light** Optical discs (CDs and DVDs) are read by a laser beam to obtain information. This information is transformed into a binary electric signal that is later interpreted and converted into sounds, images, and data. ### Laser emitter generates a laser beam of a specific wavelength. ### **Mirrors** guide the ray by working in ### Direction In order to read the disc, the laser beam must strike the surface of the disc perpendicularly. ocuses the laser beam before it reaches the surface of the disc. The laser beam strikes the disc's reflective surface. The reflection varies according to the pattern of pits on the disc's surface. ### Prism changes the direction of the laser beam that reflects from the disc and contains the data read from the disc. translate the variations in the returning laser beam and convert them into a digital **Profiles*** A binary pattern, composed of ones and zeros, is formed by the transitions between pits and flat areas. A large pit represents a certain number of consecutive zeros. A change in height polycarbonate 1 millimeter = 1,000 micrometers (μ m) 1 micrometer = 1,000 nanometers (nm) From the CD to Blu-ray, information storage has become denser, and the wavelength of the reading beams has # * Inverted view Length of the shortest pit: 0.4 μm Because blue light has a shorter wavelength than red light (which is used in CDs and DVDs), a blue laser makes it possible to read smaller pits, which accounts for Blu-ray's greater storage capacity. ### From the CD to Blu-ray This comparison traces the evolution of the compact disc—especially its storage capacity. | | CD | DVD | HD DVD | BR-DVD | |---|-----------------|------------------------------|---|-----------------------------| | Maximum capacity (single layer) | 875 MB | 4.7 GB | 15 GB | 27 GB | | Maximum capacity (double layer) | | 8.5 GB | 30 GB | 54 GB | | Laser wavelength | 789 nm | 650 nm | 405 nm | 405 nm | | Transfer rate in megabits per second (Mbps) | 6 | 11.1/10.1 | 36.55 | 36/54 | | Resistance to scratches and dirt | No | No | No | Yes | | Maximum video resolution | | 576 pixels | 1,080 pixels | 1,080 pixels | | Supported formats | VCD and
SVCD | DVD, VCD,
SVCD,
MPEG-2 | MPEG-2, VC-1
(based on WMV),
H.264/MPEG-4 AVC | MPEG-2, VC-1,
MPEG-4 AVC | 16 DAILY-LIFE APPLICATIONS **Players**Up to four players can participate the same game. use Bluetooth technology. simultaneously in All of the sensors # Nintendo Wii ith the launch of Wii, Nintendo tried to cause a revolution in the world of video-game consoles. Wii, the fifth generation of Nintendo's video-game consoles and part of the seventh generation of video gaming, is the successor to Nintendo's GameCube. Wii has several features intended to help a wider audience play
video games and get closer to the world of virtual reality. Among them are sophisticated wireless commands that transfer tactile effects, such as blows and vibrations; infrared sensors that detect the position of the player in a room and convey the information to the console; and separate controls for each hand. Wii was a commercial success from the moment of its launch in December 2006. ### **The Console** is the brain of Wii. Its slim design (a mere 1.7 inches [4.4 cm] wide) plays the games that are loaded on standard 4.7-inch (12-cm) discs, accepting both single- and double-layered discs. ### System has an IBM PowerPC processor, ports for four controllers, two USB ports, slots for memory expansion, stereo sound, and support for playing videos on panoramic 16:9 screens. ### Connectivity The console connects with the Internet (it includes Wi-Fi wireless connection), from which it can receive updates 24 hours a day to add or upgrade features. ### The Wiimote The Wiimote, the Wii's remote, differs from traditional game consoles by looking more like a remote control than a videogame controller. It was developed to be useable with just one hand. ### The Movement Sensor A player's movements are detected by means of a flexible silicon bar inside the Wiimote. This bar moves within an electric field generated by capacitors. The player's movements cause the bar to change the electric field. The change is detected and transmitted to the infrared sensor, which translates it into the movements of the virtual character. Wii # 250,000 Wii consoles are manufactured daily by Nintendo. In preparation for the Wii's launch in Japan, 400,000 units were manufactured (an unprecedented quantity for a new console), all of which were sold within a few hours. **Infrared sensor** detects the player's position from up to a distance of 32 feet (10 m) or 16 feet (5 m) during use of the pointer function (used to indicate points on the screen). ### Vibrator **-)** (a) (b) Wii generates vibrations appropriate for the situation, such as when shooting a gun or hitting a ball. ### internal speake reproduces sounds, such as gunshots or the clash of swords. Console buttons (holding down both buttons activates Wiimote's discovery mode, which can be used to set it up to work with a Bluetooth-enabled PC) ### ED liebt indicates which player is active in multiplayer games. # Controllers for every occasion Port is used to add peripherals, such as the Nunchuck, which not only enhances its functions but also its traditional controller. ### Nunchuck It is connected to the Wiimote and introduces additional options for specific games, such as twohanded boxing or changing viewpoints in target shooting. # Traditional controller This controller is still necessary for playing with games from earlier Nintendo consoles. Nintendo decided to replace them with safer ones and modified 3,200,000 units. Enthusiasm early players caused worries about the The "excessive enthusiasm" of some weakness of Wiimote straps, so **TECHNOLOGY** 19 18 DAILY-LIFE APPLICATIONS # The Digital Camera he word "photography" comes from Greek words which, combined, mean "to draw with light" (from *photos*, or "light," and *graphis*, or "drawing"). Photography is the technique of recording fixed images on a light-sensitive surface. Digital cameras are based on the principles of traditional photography, but, instead of fixing images on film coated with chemical substances sensitive to light, they process the intensity of the light and store the data in digital files. Modern digital cameras generally have multiple functions and are able to record sound and video in addition to photographs. ### **The Digital System** **CAPTURE** ### Digital image CCD ### THE SENSOR THAT REPLACES FILM The CCD (charge-coupled device) is a group of small diodes sensitive to light (photosites), which convert photons (light) into electrons (electric charges) **A Long Evolution** Light rays reflected by an object pass an inverted image within a box. A lens concentrates the light and focuses the image. Mirrors are used to reflect the image on a flat surface, and an artist traces the projected image. through a tiny hole and are projected as The camera obscura are light-sensitive cells. The amount of light shining on the photosites is directly proportional to the electric charge that is accumulated. To generate a color image, a series of filters must unpack the image into discrete values of red, green, and blue ### The optical and Nicéphore Niépce chemical principles are combined. exposes a tin plate, covered with bitumen, to light for eight hours. The bitumen hardens and turns white from the exposure, producing an image The non-hardened areas are ### The daguerreotype The daguerreotype obtained finely detailed images on copper plates covered with iodine. The images (single and positive) are developed with mercury vapor and fixed with saline solution ### The calotype Invented by Talbot, this is exposures last from one to five minutes. An unlimited number of prints could be The substitution of paper for a glass plate is perfected. The plates are sensitized with silver nitrate, which received the negative Glass plates ### 1851 ### In color CCD The Scottish physicist James Clerk Maxwell obtains the first color photograph by using light filters to produce three separate negatives ### Flexible film The number of digital cameras sold worldwide during 2006. > The Kodak camera uses a roll film. The film could be used for 100 photographs using exposures of only a fraction of a second. ### **Color photograph** The Lumière brothers perfect the procedure of using glass plates covered with different colored grains to produce images formed by tiny points of ### The video photograph Sony produces a reflex camera that records images on a magnetic disc. The images could be viewed on a 1500 1725 A light-sensitive substance Frederick Schulze prove Experiments by the 1802 Images are created by placing sheets directly over exposing them to sunlight. The images cannot be fixed. 1826 1839 Lenses 1861 Viewfinder LCD ### Binary system processing To convert the electric charges of the photosite (analog) to digital signals, the camera uses a converter (ADC), which assigns a binary value to each one of the charges stored in the photosite, storing them as pixels (points of color). ### **ADDITIVE MIXTURE** Each pixel is colored by mixing values of RGB. Varying quantities of each of these colors can reproduce almost any color of the visible The value of each can vary from 0 (darkness) to 255 (the greatest color intensity). ### RESOLUTION is measured in PPIs, or pixels per square inch— the number of pixels that can be captured by a digital camera. This figure indicates the size and ### **Compression** and storage Once the image is digitized, a microprocessor compresses the data in memory as JPG or TIFF files. **20** DAILY-LIFE APPLICATIONS reated at the end of the 1950s, video was originally a technology linked to television. Before its invention, programs had to be broadcast live, with all of the inconveniences associated with such a live event. Very soon, new possibilities were found for video, and in 1965, the Korean artist Nam June Paik made the first art video. In 1968. Sony developed the first portable video camera. On the **IMAGE RECORDER** Digital cameras allow for capturing video as well as for taking pictures, using the same technology. other hand, the launch of the VCR system by Philips in 1970 part of everyday life. made viewing movies at home a An internal program translates the light data (analog information) into the binary system (digital information). From Analog to Digital **Technology** ### **SUPER 8** Eastman Kodak developed an 8 mm-wide film inside a plastic cartridge. The film was used with a portable camera and a projector, and the format was very popular for home movies The image will be comprised of cells called pixels. in a computer. It can be used directly Sony developed magnetic tapes that were of high quality but had little recording time. It continued to be manufactured for high-quality recordings until 2002. A built-in for the inclusion of high-quality audio SONY DCR-PC330E PAI **Duration 60 minutes** The Video Home System was developed by JVC. Its advantages included rerecording most movies on a single tape, though some image quality was lost. LCD ROTATING be rotated to different angles is used as a monitor or viewfinder. It can **SCREEN** RECHARGEABLE BATTERY Up to six hours **Duration 60 to 90 minutes** ### VIDEO 2000 This system of magnetic-tape cassettes used both sides of the tape, similar to audiotape. It was distributed by Philips until 1988 REPRODUCTION AND EDITING connecting the camera to a TV, a video recorder, or a printer to print photographs. What is recorded can be viewed by **Duration 8 hours** ### VHS SYSTEM The VHS system became a standard for recording and viewing videocassettes. Home viewers and video clubs became popular. Philips and Sony introduced this digital disc. It can store every type of digital file including high-definition video. A laser is Duration of up to 240 minutes DIGITAL 8 MINI DV FOR PROFESSION DV cam Digital betacam **Several formats** Different systems and media are used for different applications, depending on the final quality desired. > Data is stored as bytes. The image can be reproduced without losing image or audio quality. The level of detail is greater in digital than in analog. 25% more quality than the analog formats The head records and plays back by means of an electromagnet. Carries the electric signals that represent image and carbon layer Magnetic laver Lubricating layer Diamond-like 2.598 inches (66 mm) Black cover The particles of the magnetic tape form varying patterns. Film base ### DIGITAL TAPE is small, which makes it ideal for portable cameras. Digital tape combines magnetic tape with the data compression made possible by digital technology. STRUCTURE OF THE
TAPE The tape is wound on a guiding roller. These small digital cameras connected to a computer can take photographs and record short videos. Connected to the Internet, they can be used in real time. 1965 1975 1976 1979 1980 1995 2000 24 DAILY-LIFE APPLICATIONS # Scanners # Athletic Shoes hese shoes were already used in ancient times in Mesopotamia and Egypt, but they became widely used in the last decades of the 20th century. The first athletic shoes appeared in 1893. They were made of canvas and were used so that sailors did not need to walk with shoes along the docks. Today athletic shoes incorporate true technological advances designed to meet the needs of each sport. For instance, athletic shoes have begun to incorporate air chambers, located between the insole and the external covering of the sole that act as cushions to protect the foot. ### Interior Many different materials are used. Models for running must satisfy requirements for cushioning, stability, and ventilation. duces excess heat and friction Made of foam rubber or EVA to provide extra cushioning. ### LATERAL MOVEMENT is one of the most dangerous movements for sports people. A good shoe controls the natural movement of the foot. There are three types of footstep. material, placed in ### FASTENING SYSTEM Shoelaces, zippers, or Velcro. They must fasten the <mark>shoe in such a w</mark>ay that the # **3** ounces (390 g) IS THE WEIGHT OF THIS ATHLETIC SHOE. ### **SIDE PANELS** For ventilation **METALLIC MESH** Ultrathin to ward off dust ### HIGHLY ENGINEERED MESH allows air but not dirt ### TOE CAP The openings provide Their function is to provide comfort and stability and to support the foot. They must be light and flexible. INNER SOLE provides a good fit and molds to the foot. Depending on weight and breathability. against the toe cap can be made of solid or natural rubber. Some include air bubbles that compress when impacted. Each sport requires a different design whose main function is to provide a good grip on the surface. sink into the soil for a ### **Biomechanics of Racing** ### LANDING With support, the foot ### IMPULSE The pressure shifts from the heel to the BASKETBALL TECHNOLOGY 27 # Breakthrough Inventions THE FIRST COMPUTE The Electronic Numerical Integrator and Computer (ENIAC) was invented in the 1940s and weighed 30 tons, occupied 1,800 square feet (170 sq m), and required a total of 17.468 electronic valves for its operation. SKYSCRAPERS 30-3 THE CELLULAR TELEPHONE 32-33 PS 34-35 THE COMPUTER CHIP 36-37 THE COMPUTER 38-39 THE INTERNET 40-41 CINEMATOGRAPHY 42-43 TELEVISION 44-45 THE PRINTING PRESS 46-47 THE LASER 48-49 HOLOGRAPHY 50-51 n the history of technology, there are milestone inventions that radically changed the world and the way we perceive it. Many of these inventions, such as cinematography or the radio, are the realization of the longtime hopes and dreams of humankind. Others, such as the Internet, the cellular telephone, or GPS, have transformed the way we communicate and have dramatically shortened distances between people. Inventions such as the printing press and the computer chip led to the dramatic development of the arts and sciences, enabling in turn the appearance of more new technologies. Others, such as computers, have not only become indispensable tools, but they have also led us to question the nature of intelligence. 30 BREAKTHROUGH INVENTIONS TECHNOLOGY 31 # Skyscrapers he development of new materials—especially high-performance concrete and steel—has led to the design and construction of buildings to heights never achieved before. For architects and engineers who work on the construction of large skyscrapers, the greatest challenges lie in ensuring the adequate delivery of services, from elevator systems and gas and water lines to complex emergency systems. There is also a new issue to deal with: how to make the structures less vulnerable to potential terrorist attacks, especially after the September 11, 2001, attacks in New York City. High-performance concrete is manufactured by using finer particles and adding special chemicals. Because of its increased resistance, smaller amounts of concrete are needed. ### The Tallest in the World 1,640 feet (300-500 m). But the new generation of skyscrapers will at least double this measure. Today the tallest buildings in the world stand between 980 and Empire State Building (U.S.) 1,250 feet (381 m) World Trade Center (U.S.) 1,368 feet (417 m) —destroyed in 2001 Finally, the curtain wall is built over the framework. It is typically made of glass panels, although other materials are Jin Mao Tower (China) 1,377 feet (420 m) Sears Petronas Tower Twin (U.S.) Towers 1,450 (Malaysia) feet 1,483 (442 m) feet (452 m) Taipei 101 (Taiwan) 1,667) feet (508 m) Burj Dubai (U.A.E.) more than 2,600 feet (800 m) # The Uncertain Primacy of the Burj Dubai The record set by Burj Dubai could be shortlived if the planned construction of the Al Burj, also in Dubai and with a planned height of 3,940 feet (1,200 m), goes forward. ### The Burj Dubai is the tallest building in the world and is currently under construction in Dubai, United Arab Emirates. Its final height has been kept secret to avoid potential competition, but it is believed that it will be anywhere from 2,625 to 3,280 feet (800-1,000 m). ### **TECHNICAL SPECIFICATIONS** - Height: Between 2,625 and 3,280 feet (800-1,000 m) - Floors: 181 to 216 - Elevators: 3,445 feet per minute (1,050 m/min) or 40 miles per hour (65 km/h) (they will be the fastest in the world) - Structure: High-performance concrete reinforced with steel - Exterior: Glass with solar filters, aluminum, and stainless steel - Volume of concrete: 9,181,810 cubic feet (260,000 cu m) - Reinforced steel: 34,000 tons - Projected cost: \$876 million - Weight: The building's weight will equal that of 100,000 elephants. ### **FLEXIBILITY** Strong winds can cause tall skyscrapers to sway. The Burj Dubai building, given its height, will be particularly vulnerable to this phenomenon. ### ight Swa 1,985 feet (605 m) ____ 5 feet (1.5 m) 1,870 feet (570 m) ____ 4 feet (1.25 m) 1,450 feet (442 m) ____ 2.5 feet (.75 m) 1,230 feet (375 m) ____ 2 feet (.5 m) 248,320 The number of gallons of water that will be required to supply the daily demand at the Burj Dubai skyscraper ### **STRUCTURE** The base of the building is designed in a Y shape. In addition to providing structural strength, this design provides more area for windows. Prior to construction, the structure was rotated according to the prevailing winds to reduce structural stress. ### SAMPLE FLOOR PLAN Distribution of units/rooms - ☐ Lobby and service areas - □ Units/rooms - Emergency exits 32 BREAKTHROUGH INVENTIONS **TECHNOLOGY 33** # The Cellular Telephone ew inventions have had as widespread an impact as the cellular phone. In just two-and-a-half decades, the cellular phone has become extremely popular around the world and almost indispensable for populations in the developed world, to the point that sales already surpass one billion units a year. The latest cell phones, in addition to being small, portable, and light, are true workstations that far exceed their original function of keeping the user connected at any time and place. The switch maintains a database of all the cell phones that are turned on and their cell-site locations. It then locates the position of the called party and sends the information to the appropriate cell site. The switch ### Communication Providers divide an area into a system of cell sites. Each site has an antenna that detects the presence of a particular cell phone in its area and identifies it through the phone's unique code. When a number is dialed, the antenna caller and the called party. It then transmits this information # 28 ounces (780 g) is the weight of the Motorola DynaTAC 8000X, which was the first commercially available cellular phone. More recent models weigh less than 2 ounces (50 g). ### The Evolution of the Cell Phone Since the first cell phone appeared on the market in 1983, mobile telephones have become smaller and, at the same time, they have incorporated dozens of new features, such as Internet connectivity, picture taking, and videoconferencing; the mobile telephones also play music. **Simon Personal** First cellular First PDA/cell phone Added applications such as a calculator, calendar, address book, etc. Motorola StarTAC First clamshell cell phone One of the first to use Design reaches the cell Wireless Application First cell-phone camera (released First MP3 cell 2001 First Palmpowered cell 2005 2001 Among the first thirdgeneration cell phones (with First cell phone has a 3.5-inch (8.9-cm) touch screen and Wi-Fi Web access ### **In Motion** Cell sites detect the movement of a cell phone; as the signal weakens at one site, it becomes stronger at another. This movement allows even during high-speed movement from one cell site to another. ### **INTERNATIONAL** CALLS As is the case with landline phones, international communications are facilitated with the assistance of satellites ### **Smartphones** In addition to being a telephone and having such traditional features as a calendar, calculator, and camera, a smartphone incorporates advanced computing capabilities for connecting to the Internet through Wi-Fi and to other devices through Bluetooth. # 3 billion Connecting The local cell-site antenna establishes communication with the requested cell phone. > is the approximate number of cell phone subscribers in the world, according to the latest data. This number is equal to almost half of the world 2007 iPhone # **GPS** he Global Positioning System (GPS) allows a person to locate his or her position anywhere on the planet, at any time, using a small handheld receiver. Originally developed as a military project, GPS has now reached every corner of civilian life. Today it is not only an essential tool in ships and aircraft, but it is also becoming, due to its
multiple applications, a common feature in vehicles as well as in athletic and scientific equipment. ### Satellites, Lighthouses in the Sky The Navstar GPS satellites are the heart of the system. The satellites emit signals that are interpreted by the GPS receiver to determine its location on a map. The system has a constellation of > When a second satellite is detected and the distance calculated, a second sphere is formed that intersects with the first sphere along a circle. The user can be located anywhere along the perimeter of this circle. They circle the Earth every 12 hours. The receiver detects one of the satellites and calculates its distance. This distance is the radius of a sphere whose center is the satellite and on whose surface the user can be located, although at a point vet to be determined. 3 A third satellite forms a third sphere that intersects the circle at two points. One of the points is ruled out as an invalid location (for example, a position above the surface of the Earth). The other point is the correct location. The more satellites used, the lower the margin of error. 24 main satellites that orbit the Earth at an altitude of 12,550 miles (20,200 km), collectively covering the entire surface of the planet. ### **Features** Since GPS is a dynamic system, it also provides real-time data about the movement, direction, and speed of the user, allowing for a myriad of uses. ### Location The civilian user determines his or her position using three-dimensional geographic coordinates, with a margin of error between 7 and 50 feet (2-15 m) depending on the quality of the receiver and the satellites it detects at any given moment. ### Maps Extrapolation of the coordinates using geographic charts of cities, roads, rivers, oceans, and airspace can produce a dynamic map of the user's position and movement. ### **Tracking** The user can know the speed at which he or she is traveling, the distance traveled, and the time elapsed. In addition, other information is provided, such as average speed. ### Trips Trips can be programmed using predetermined points (waypoints). During the trip, the GPS receiver provides information about the remaining distance to each waypoint, the correct direction, and the estimated time of arrival. Although it was originally developed as a navigational system, GPS is used today in a variety of fields. The **SPORTS** GPS devices keep the athlete informed on time. speed, and distance MILITARY Used in remote controlled and navigational systems SCIENTIFIC Used in paleontology, archaeology, and animal tracking Distance to the next waypoint Icon and name of the next waypoint (in this case, an exit) free use of this tool for work, business, recreation, and sports activities is changing the way we move and act. **EXPLORATION** Provides orientation and marks reference points EXIT N RT-15 / JEFFERSON / 4.4 mi | 01:30 | 70 mi Time elapsed Direction to the next 1-80 Air and maritime navigation. Its use is growing in automobiles AGRICULTURE Maps areas of greater or lesser fertility within different plots of land The annual cost, in millions of dollars, to maintain the entire Global Positioning System. # Clocks Thanks to data received from the satellites, civilian GPS receivers also function as atomic clocks (the most precise in the world), although several thousands of dollars cheaper. ### **CALCULATING DISTANCES** Once the GPS satellites are detected by the GPS receiver, the receiver's challenge is to precisely calculate its distance and position in relation to those satellites. 1 The receiver has in its memory the satellites' ephemerides (from the Greek word ephemeros, meaning "daily")—that is, their position in the sky by the hour and day. 2 Upon detection of a satellite, it receives a highly complex signal of on-off pulses called a pseudo-random code own code that helps the receiver identify it. The code travels at the speed of light. the exact time of each repetition (the comparison, the receiver determines the lag in the satellite's signal, and since it knows the signal's speed, it can determine the distance. # The Computer Chip ithout this small electronic device, the majority of new technologies from the past few years would not exist. The computer chip is present in myriad objects used every day. Despite its limited dimensions, each chip contains thousands or millions of interconnected electronic devices (mainly diodes and transistors) and also passive components (such as resistors and capacitors). Its invention was made possible with the discovery that semiconductor elements could accomplish the same functions as vacuum tubes but with a much superior performance and at considerably lower cost. ### What It Is It is a thin silicon wafer that measures less than half an inch (1.3 cm) across and can contain several million electronic components 0.02 inch $(0.6 \, \text{mm})$ is the size of the smallest computer chip in the world. It is used to detect counterfeit bills. ### **SOME APPLICATIONS** | HOME | Microwave ovens, digital clocks | | | |----------------|---------------------------------|--|--| | OFFICE | Computers, calculators | | | | COMMUNICATIONS | Telephones, TV, radio | | | | TRANSPORTATION | Air and land traffic control | | | | MEDICINE | Diagnostic equipment | | | | ENTERTAINMENT | Audio, video games | | | | MILITARY | Weapons | | | ### Where They Are Found PRINTED CIRCUIT BOARDS are used inside electronic devices. They are tiny and placed on top of a copper sheet that is laminated onto a plastic board. INTEGRATED CIRCUITS are mounted on printed circuit boards and are connected via copper A layered silicon **Evolution of the** **Computer Chip** electronic 2000 # COPPER PACKAGE Plastic or ceramic casing **PINS** are small metallic legs that connect the integrated circuit to the printed circuit. ### **THE INVENTOR** **TECHNOLOGY 37** Jack Kilby developed the first integrated circuit in 1959. His invention had a huge impact on the development of the electronics industry. ### **Jack Kilby** Electrical engineer from the United States. He was awarded the Nobel Prize for Physics in 2000. ### **SIZE REDUCTION** Continuing improvements in the techniques of computer-chip fabrication have allowed the development of ever-tinier electronic components. millions of # **TRANSISTOR** Etched in the silicon, the transistor is a very effective semiconductor device and amplifier, but microscopic in size. The smallest ones measure 50 nanometers. ### **HOW TRANSISTORS WORK** Transistors act like electronic switches that are activated and deactivated by means of an electrical signal. ### **ACTIVE CIRCUIT** ### **INACTIVE CIRCUIT** and the circuit is deactivated. ### YEAR MODEL **TRANSISTORS** 1971 4004 2.250 1978 8086 29.000 1985 275,000 486 1.180.000 1989 1993 PENTIUM 3.100.000 42,000,000 PENTIUM 4 ## **First Integrated Circuit** **GLASS SUBSTRATE** components are placed. **GOLD WIRES** are soldered to chip terminals and connect WIRE CONNECTORS 0.6 inch (1.5 cm) - **38** BREAKTHROUGH INVENTIONS **TECHNOLOGY 39** # The Computer rom the huge calculating machines that occupied entire rooms to today's home and laptop models, computers have revolutionized how we see the world and relate to it. Today our everyday lives are characterized by information technology, whether for recreation, work, study, or communication. Already under development are quantum computers and so-called molecular computers, which are biocomputers that use DNA as the basis of their circuits and that have the ability to replicate themselves. ### LAPTOP MODELS have a rechargeable battery basically have the same features as a PC. ### **The Personal Computer** is made up of various interconnected devices (the hardware) and programs (the software). The core is a very powerful microprocessor that contains all the devices and is installed on the motherboard. ### PROGRAM is the component most closely related to the user. It is also known as application software. It allows the user to accomplish tasks, such as processing text and images, performing calculations, managing databases, and using the Internet. The images are formed by tiny cells called pixels, which use the additive primary colors red, green, and blue. High-resolution monitors can have an array of up to 1,920 x 1,200 pixels. ### **OPERATING SYSTEM** Windows is the one most commonly used. It presents the system in a user-friendly way, using icons, folders, and windows. ### **ACCESS DEVICES** It is used to enter data (numbers, letters, and symbols) by sending coded signals to the microprocessor. When a key is pressed, a ### UNDERSIDE A video camer registers A light-emitting diode (LED) illuminates the # OPTICAL MOUSE controls the placement of the cursor in the computer's graphic interface. It registers any movement of the mouse and calculates the coordinates ### STORAGE DEVICES are used to save information or transport information to another computer. ### CD/DVD READER/RECORDER reads and also records CDs and DVDs ### HARD DISK saves programs and folders as permanent, magnetically recorded data. ### FLOPPY DRIVE reads and records information on flexible floppy disks (diskettes). ### COMPUTER TOWER is the case that holds the main components. ### CONNECTORS **PARALLEL** are used to connect peripheral devices. such as a modem, scanner, or printer. The information on the monitor is updated ### How a **Computer Works** Example of the routing of information during a basic process Data enters the computer through a keyboard, mouse, or modem and is interpreted by the appropriate circuit. ### MICROPROCESSOR controls all computer functions. It processes the entered data and carries out the necessary arithmetic and logic calculations. ### RAM MEMORY temporarily stores all the information and programs used by the microprocessor. ### PROCESSING Data can travel back and forth from the CPU to the RAM several times until processing is complete. ### STORAGE Data is sent to a storage device
(for example, the hard disk). through the video card. ### **Essential Components** ### **MOTHERBOARD** The main printed circuit board to which all other hardware components are connected (Read Only Memory) Used to store the basic startup instructions for the computer allow for the insertion of circuit boards to incorporate more devices. 40 BREAKTHROUGH INVENTIONS # The Internet s a worldwide network where interconnected computers of every type can exchange information. The social impact of the Internet is comparable to the invention of the printing press, enabling the free flow of information and access to it from anywhere in the world. With the appearance of blogs, the world of editing and journalism has become democratic, since virtually anyone can publish their own texts, images, and opinions. ### **HOW IT IS SET UP** ### THE BROWSE is a program that allows the user to see documents on the World Wide Web and to go from one document to another using the hypertext transfer protocol (HTTP). The most common browsers are Internet Explorer, Netscape, and Firefox. A WEB SITE OR WEB PAGE contains a series of documents written in hypertext markup language (HTML) combined with other, more sophisticated languages, such as Java and Flash animation. ### **ELECTRONIC MAIL** travels from one computer to another through e-mail servers. It can carry attachments, such as photos or text documents. ### **SEARCH ENGINES** are tools used to find information available on the World Wide Web. They function like a database that is constantly being updated by robots that prowl the Web and collect information. The most commonly used search engines are Google and Yahoo; they also offer other services to their users, such as e-mail and news updates. ### CHAT This service allows a group of users to communicate with each other in real time. It started out only in written form, but it is now possible to transmit audio and video images via webcams. ### **VOICE OVER IP** is a system that allows a computer to communicate with a regular telephone anywhere in the world, bypassing normal telephone charges. It requires an Internet connection and a program that enables this type of communication. ### **Transmitting Information** **46** BREAKTHROUGH INVENTIONS **TECHNOLOGY 47** # The Printing Press he social and cultural impact of the invention of the printing press is comparable to the development of language and the invention of the alphabet. It made possible the establishment of a scientific community, in which knowledge can be communicated with ease. In addition, it made the notion of authorship of a text more meaningful, the book became a popular object, and the dominance of Latin ended, definitively displaced by local tongues. According to some theorists, such as Marshall McLuhan, the press fostered the preeminence of words over the image, changing the way we understand the world today. **PRINTING** paper. The machine is equipped with a rod (front and back). that flips the paper over # **Different Systems** These processes all require a printing plate or other printing surface but differ in the way they separate the printed area from the nonprinted area. **LETTERPRESS FLEXOGRAPHY** The printing surface may be surface is rigid or flexible. The printing **SERIGRAPHY** The printing surface is a OFFSET uses an aluminum printing plate covered with photosensitive material. ROTOGRAVURE The printing surface is a coppercoated cylinder with tiny pits, or cells, for the ink. ### **Digital Printing Systems** eliminate the need for film (used in traditional printing processes). These machines can accomplish all the steps of production up to delivery of the finished product. The development of the digital printing systems began in the 1990s. **PAPER** HEWLETT **PACKARD INDIGO PRESS** ### **CUTTING AND** Ink is transferred to the **FOLDING** The printed spool of paper is cut, and the sheets are arranged so that the pages line up in proper order, including the cover. ### **BINDING AND** FINISHING The pages are stapled or glued together, and knife blades trim off the excess border to the publication's final size. ### **Technological Advances** In China, multiple copies of an image or text were made invented a printing system type. Words were assembled letter by letter and could be used to **MOVABLE TYPE** # LINOTYPE based on the property is similar to a until then had been a is a printing technique based on lithography that uses plates for the page surface. Currently offset is the most frequently used Computers eliminate the use of printing plates integrates all production steps in one single machin DIGITAL # INFORMATION The information is sent from here. The original document is a digital file whose data is sent directly ### **INKING SYSTEM** INKS The printers use four basic ink colors to obtain the majority of colors. Special color inks (metallic. fluorescent, Pantone) can also be used A FOLD INTERNAL DENSITOMETER a separate printing plate for each color, and each color is printed separately # MAGENTA CYAN YELLOW BLACK # 593 Around 1450 1796 1886 1904 1990 # The Laser ased on quantum mechanics, the laser is an optical device that emits a well-defined photon beam. The result is monochromatic light that can have various properties depending on the purpose for which it is designed. The name is an acronym for Light Amplification by Stimulated Emission of Radiation. When lasers were invented in 1960, they were called a "solution in search of a problem." They have since resolved myriad "problems" in the sciences, the arts, medicine, industry, and everyday life, becoming an essential tool in modern society. ### **How a Beam Is Formed** Light is amplified by stimulated emission ### THEORETICAL PRINCIPLES A laser is based on the behavior of atoms, which are in constant motion and can achieve different states of excitation. This generates different types of energy. External stimulation with heat, electricity, or light can result in the conversion of static energy to kinetic energy. ### THE LASER LIGHT is directed and has a predetermined wavelength Its power resides in the concentration of photons within a narrow beam. ### **ORBITS AND THEIR ENERGY LEVELS** proximity of the orbits to the nucleus. The greater the distance, the higher the Inner orbit Low energy level ### AN ELECTRON'S LEAP LIGHT GENERATION When an electron is struck with a burst of energy, it can momentarily jump to a higher-energy (outer) orbit. When the electron returns to its original orbit, it releases energy in the form of a THE INVENTOR Theodore Maiman Year 1960 Type Ruby laser centimeters across. It was the first working laser, and it was built using a ruby rod measuring just a few The amount of light emitted by a small lamp is greater than the amount of light emitted by a laser, but the light does not have a specific wavelength and direction. # Holography ased on the optical phenomenon of interference, holography is a photographic technique that allows an image to be recorded in three dimensions on a flat surface. Holograms are often confused with the transmission of three-dimensional images, particularly in science-fiction series and films, such as *Star Trek* or *Star Wars*. Holograms are commonly used as security features on credit cards, currency, and merchandise, because they are difficult to counterfeit. Holography is currently being researched as a way to protect digital data. One of the technologies in development uses high-density crystals to store the data. Another is the so-called Holographic The beam is split in two. One of the two beams is reflected by a mirror and dispersed by means of a lens, thereby illuminating the object. The second beam is directed at ### Holographic Recording Process The laser emits a beam. Versatile Disc (HVD). 6,000 is the number of CD-ROMs needed to store the four terabytes contained in an HVD. > A diverging beam illuminates the original object, which reflects part of the light toward the photosensitive plate. **Principles** The creation of holographic images is based on the behavior of light through space, time, and wave interference. If two or more wavefronts cross each other, interference is produced. The resulting wave incorporates the positive and negative amplitudes of the original waves. Wave 2 The second beam is reflected by the second mirror, passes illuminates the photosensitive plate. through a diverging lens, and **THE INVENTOR** was born in Budapest, Hungary. He received the Nobel Prize for Physics in 1971. ### **DENNIS GABOR** 1900-79 While conducting research to improve the resolution of the electron microscope, Gabor discovered a process that recorded and reproduced three-dimensional images. It was described in 1947, prior to the invention of the laser beam, and became known as holography. When the two beams meet on the photosensitive plate, they produce a hologram or interference pattern. When the hologram is illuminated again by the reference beam, the original object image is re-created. # Science and Health LASER EYE SURGER At one time considered a revolutionary technique, this technology has now become so commonplace and simple that it can even be performed at malls, with the public able to watch the procedure. MAGNETIC RESONANCE IMAGING 54-55 POSITRON EMISSION TOMOGRAPHY 56-57 4-D ULTRASOUND 58-59 ROBOTIC SURGERY 64-65 ARTIFICIAL HEART 66-67 **BIONIC IMPLANTS 62-63** IN VITRO FERTILIZATION 60-61 t one time, the practice of medicine was more of an artisan's craft than a science and involved just a few tools to cure people. Around 500 years ago, due to remarkable scientific and technical advances, medicine became a technological discipline. Because of this development, life expectancies increased significantly, and remedies that before might have been considered miraculous became commonplace. Obviously the story is not over yet, and there is still much to be accomplished, but advances, such as robotic surgery, where a doctor performs
surgery remotely, or the use of magnetic resonance equipment that can detect tumors in soft tissue, are very important. • **54** SCIENCE AND HEALTH **TECHNOLOGY 55** # Magnetic Resonance Imaging (MRI) hanks to a sophisticated technology that combines magnetic fields and radio waves, it is possible to render high-quality images of soft tissue in the human body without inconvenience to the patient, other than the requirement for the patient to remain still for a few minutes. Another revolutionary feature of this technique is that it does not require the use of contrast agents or the use of X-rays, as is the case for # HYDROGEN IN THE BODY Hydrogen atoms are present in almost all tissues and fluids, especially in water (which makes up 70 percent of the body) and in fat. ### The hydrogen atom is the simplest element It has just one proton (+) and one electron (-). Because of its physical structure, the hydrogen atom's proton spins on its axis. This generates a magnetic field that will interact with an external magnetic field. It also spins around a second axis, like a top. traveling within a (precession) **HUNTING FOR ATOMS** 1 Hvdrogen in the body randomly oriented in different directions. precession are Classification Low-energy nuclei. The spin and the High-energy nuclei. The spin and the precession axis rotate in opposite directions. ### **Inside a Scanner** To render an image of the soft tissue in the human body, the machine scans for the hydrogen atoms in these tissues. To detect the atoms, the area is initially subjected to a powerful magnetic field and later stimulated using radiofrequency waves. This process causes the atoms to release energy that is then detected by the scanner and converted into images. radiography or computerized tomography. ### Superconducting magnet - The magnet, made out of a niobiumtitanium alloy, becomes a superconductor when it is cooled to -452° F (-269° C). It generates a powerful magnetic field that lines up the hydrogen protons prior to their being stimulated with the radio waves. ### Cooling systems In addition to compensating for the enormous amounts of heat generated by the electromagnetic equipment, these systems cool the main magnet to -452° F (-269° C) to turn it into a superconductor. Liquid helium is generally used as the cooling agent. ### **Magnetic gradient coils** generate secondary magnetic fields that, together with the superconducting magnet, enable imaging of different planes of the human body. ### Radio-frequency transmitter emits radio signals through a transmitting coil (antenna) to stimulate the hydrogen atoms that are aligned by the magnetic field. When the stimulation stops, the atoms release energy that is captured and used to form the image. ## **Planes** Frontal cross section Top cross section When transmission of radio waves stops, the low-energy protons return to their previous state. While they relax, they release the energy they have absorbed. ### 5 Analysis This released energy is interpreted by the MRI scanner to form images. ## **High Magnetism** The magnetic field generated by MRI scanners tends to be tens of thousands of times more powerful than the magnetic field of the Earth. A strong magnetic field helps to line up the precession axes in the same direction. 2 Magnetism ### 3 Stimulation Next, energy in the form of radio waves is applied, and low-energy protons absorb it to become high-energy protons ### 4 Relaxation 56 SCIENCE AND HEALTH TECHNOLOGY 57 58 SCIENCE AND HEALTH that are reflected by the fetus **60** SCIENCE AND HEALTH **TECHNOLOGY 61** # In Vitro Fertilization ver since the first successful case of in vitro fertilization in the United Kingdom almost three decades — ago, this technique has become the most popular and widespread method of assisted reproductive technology. It involves removing a woman's ova, or eggs, and fertilizing them with sperm outside the woman's womb; in fact, the procedure is done in a laboratory to avoid various problems that can hinder a natural pregnancy. Once fertilized, the embryo is implanted in the uterus to continue gestation. Over time. in vitro fertilization techniques have become more efficient, and in the past few years, the number of successful pregnancies has seen a seven-fold increase. Today in vitro fertilization can be combined with # other techniques to increase the chances of conception. throughout the world that have been conceived through this method since the first-known case in 1978. gland development of the egg **Searching for Eggs** The first step in achieving in vitro fertilization is to obtain good eggs in sufficient numbers to be Once the most suitable eggs are selected, they are fertilized in a laboratory with the sperm of the future father and either inserted into the mother's uterus or frozen for use at a > The semen sample obtained from the father is treated to separate the spermatozoa and to The head of the spermatozoon contains DNA that, the egg's DNA, will ### **Back into the Uterus** ### **Fertilization** takes place in a special cultivation medium in a petri as the human body. ### The embryo From this moment, the embryo is monitored and cared for by medical personnel. If it develops successfully, it will become a baby ### **After 12 hours** the first cellular division takes place. The embryo now consists of two cells. The number of cells exponentially every 12 to 15 hours. When the embryo reaches between 16 and 64 cells, it is called a morula (from the Latin word morus, meaning "mulberry"). When it surpasses 64 cells, the embryo becomes a blastula. A large cavity forms in the middle. At this phase, the embryo can be transferred to the woman's uterus. ### extract eggs from both ovaries **Success Rates** is the acronym for a technique known as Intracytoplasmic Sperm Injection, which has revolutionized infertility treatment in recent years. It consists of injecting the spermatozoon directly into the ovaries during in vitro fertilization. Usually a woman suitable egg each produces one cycle (every 28 days). By using hormones, several more eggs can be stimulating At this stage, the woman is monitored with scans and blood determine her tests to hormonal Once they mature, extracted through follicular aspiration A needle connected the eggs are to a suction instrument is For a 35-year-old woman, statistics show that only one of every 16 eggs will develop and result in a pregnancy. ### Five eggs are not suitable. **62** SCIENCE AND HEALTH **TECHNOLOGY 63** # Bionic Implants ntil a few decades ago, the only option for amputees was the use of rigid and uncomfortable wood prostheses. Today at the beginning of the 21st century, the dream of being able to use artificial limbs that are connected through the nervous system—with the capability of responding to direct commands from the brain—is at the point of becoming reality. At least there are very advanced experimental prototypes along those lines, and there are already commercially available prostheses with surprising features, which in some cases are superior to human limbs. ### Half Human, **Half Machine** Among the numerous advances forthcoming in the next few years, in addition to bionic arms and legs, are: products stemming from the development of artificial veins, arteries, organs, and muscles; eyes and ears for the blind and deaf; microprocessors that enable quadriplegics to recover the use of their limbs; and even a device to eliminate chronic pain. **Deltoid** ### Almost Science Fiction The experimental bionic arm developed by the Rehabilitation Institute of Chicago is one of the most advanced models yet made. It can interpret commands from the brain so that the patient can regain the full functionality of the limb that was lost. The surgeons take the nerves that were connected to the arm and redirect them to muscles of the thorax. When the person fitted with the device wills an action involving the arm, such as raising the arm, the hand, or a finger, the command travels through the nerves, which produce small, precise contractions in the thorax muscles. detected by a series of sensors that transmit electrical signals to the computer in the prosthetic arm. The computer then directs the motors to make the arm perform the desired motion. Wrist Nerve ### The Intelligent Foot In contrast to the bionic arm, the Proprio Foot (which was developed by the prosthesis company Ossur and is commercially available) does not interpret commands from the brain. Instead it reproduces the functions of the human foot by taking into account the terrain and the user's movements and gait. ### Operation A device called an accelerometer records the movement of the leg about 1,000 times each second. The computer uses the data to make the appropriate adjustments of the mechanisms in the foot ### Versatility The Proprio Foot can turn, flex up and down, and carry out adjustments that make walking comfortable, even when going up a slope or climbing stairs—situations that tend to be difficult for amoutees. In general, it is not necessary for the user to make any adjustments because the prosthesis automatically detects and analyzes changing situations and continually makes its own adjustments. ### **Always Alert** ### **Sitting** For greater comfort, the prosthesis bends the foot so that its forward tip touches the ground. ### On stairs When the prosthesis detects two stair steps in succession, it rotates the ankle to place the foot in the proper position. The number of persons worldwide who have some type of disability. The figure accounts for 10 percent of the world population. The various surgical instruments used at replaced. different stages during the operation are easily ## Robotic Surgery he use of robots to perform surgeries stopped being a science-fiction fantasy and became a reality about 10 years ago, when the first surgeries of this kind were performed. During unassisted robotic surgery, the surgeon works from a computer console while a robot
with special arms operates directly on the patient. This type of surgery enables the surgeon to operate remotely on patients located across the world by using a high-bandwidth connection. Robotic surgery offers numerous advantages, such as extreme precision of the incisions (hand movements are scaled and filtered to eliminate hand tremors) and the small size of incisions, which shortens recovery time for the patient and allows a given doctor to operate on a specific patient without having to be in the same physical location. #### The Console is where the surgeon performs the surgical procedure. The virtual-reality environment allows the doctor to observe incisions and organs magnified up to 20 times. In spite of not operating on a patient directly, the console allows the doctor to "feel" the operation, because the robot transmits data related to flexibility, pressure, and resistance, among other information. 500,000 is the approximate number of robotic surgical procedures that have been performed since the technique was first developed in 1977. The necessary incision The Robot used to perform the operation. obeys the surgeon's instructions sent from the console. Its arms have ample freedom of movement and hold the surgical instruments The robot filters out the surgeon's abrupt movements or hand tremors, making the surgery more efficient. During robotic surgical procedures, a doctor or nurse assists the surgeon. ### **Special Surgical Instruments** The robotic arms can hold a wide range of instruments, from scalpels of various sizes and cameras to suture materials, clamps, needles, and scissors. Suture clamps Scalpels Scissors Forceps Cauterizers Clip applicators ors Cameras surgeons currently practicing around the world. 66 SCIENCE AND HEALTH ## **Artificial Heart** he artificial heart has experienced a notable development since the first permanent artificial-heart implant in 1982, although the procedure continues to undergo experimental study because of its complexity. The most advanced artificial heart, a model called AbioCor, has been successfully implanted into a number of seriously ill heart patients, one of whom lived as long as 17 months with the device. The AbioCor heart is self-contained within the body and needs minimum maintenance. The marvel of the artificial heart is closer to becoming an everyday reality, although in the short term it is still not available for widespread use. ### **How It Works** The key to the artificial heart is a compartment that has flexible walls and is filled with silicone fluid. An internal rotary motor causes the fluid to press outward, creating pressure against the flexible walls of the compartment. Valves direct this pressure, which is the secret to the proper operation of the artificial organ. #### Valve motor operates the valves that control the flow of hydraulic fluid from one side of the compartment to the other. It runs at up to 9,000 rpm to produce the centrifugal force that creates the hydraulic pressure. ### PUMPING The hydraulic pressure in the pump is directed against the flexible wall on one side of the pump. The wall pushes outward against an overlying chamber filled with blood and pushes the blood out of it. Meanwhile, the overlying chamber on the opposite side of the pump fills with blood. The closed valves open and the open valves close, and the hydraulic pressure is shifted to the other side of the pump. The process repeats itself over and over. Direction of the blood ## 5 years is the anticipated survival period for patients who, in a few years, will receive the AbioCor II, a new model whose introduction is expected in 2008. ### **Implanted Components** Except for an external pack of batteries, all the components of the system are placed within the body of the patient and are not visible. ## Transcutaneous energy transmitter It has an external coil that sends energy through the skin to an internal reception coil; this energy is used for charging the internal batteries. This setup avoids having wires or tubes protruding through the skin and consequently reduces the risk of infection. #### Heart weighs 2 pounds (0.9 kg). It is powered by the internal batteries. #### Controller In addition to controlling the operation of the heart, it monitors the blood temperature and pressure. #### Internal batteries contain lithium. They receive energy from the external batteries and transfer it to the artificial heart. Outside body body Inside ## External battery pack also contains lithium. The pack is the only part of the system that is not implanted within the body. It is used to recharge the internal batteries. #### Remote monitoring unit It is used to monitor the operation of the artificial heart. ## Cutting-Edge Technology ROBOT PRODUCTION In the future, these machines will be able to "see," which will allow them to control airports, fly planes, and drive military vehicles. SMART HOUSES 70-71 NANOTECHNOLOGY 72-73 SMART CLOTHING 74-75 BIOTECHNOLOGY 76-77 ARTIFICIAL INTELLIGENCE 78-79 SPACE EXPLORATION 84-85 EXTRASOLAR PLANETS 86-87 TUNNELING MICROSCOPE 88-89 HADRON COLLIDER 90-91 oday technology continues to pave the way toward the future and is beginning to change our lives and habits. Recently a number of documentaries have shown us different applications of smart technologies, technologies that are already in use in Japan, including companion robots that many families consider to be a family member. These types of technological breakthroughs are only now taking off, and they still tantalize and delight us. But one thing is certain: the future is here, and we are seeing it develop in front of our own eyes. We invite you to discover the numerous applications of nanotechnology and smart clothing, new allies in the search for a higher quality of life. ## **Smart Houses** he goal of smart-house technology is to develop ways that give a house intelligence so that it can adapt on its own to the needs and wishes of the people who live in it while it also takes care of all the tasks related to home maintenance and security. Even though much of the technology that has been developed for this purpose is too expensive for most people, the continual advances made in this field suggest that in the near future almost all homes will have smart-house devices. #### **Window blinds** can be programmed to open or close depending on the amount of sunlight. #### **Virtual paintings** use photographic images that are downloaded from the Internet and changed periodically. #### **Occupied-home** simulator When the house is empty for an extended period of time, the system opens blinds and turns on lights and appliances to make it appear that someone is at home. #### Light #### sensors measure the amount of natural light so that outdoor lighting can be used efficiently. ### **Primary Functions** #### SECURITY SURVEILLANCE #### SECURITY PROTECTION warns of such dangers as fire, water or gas leaks, and electrical faults. #### **COMFORT AND ECONOMY** systems to make the home comfortable and to use energy efficiently. #### **Emergency** lighting Mail detector ### Central system Watering the garden be programmed to vary according to the season. The schedule for watering can ### Remote connection The house systems can be monitored from a computer or cell phone with an Internet connection. #### Pool maintenance #### **Appliance control** All the home appliances can be programmed and monitored from the central system. #### **Control for air** conditioner #### Antenna for satellite TV or Internet An Internet connection can be used to control the system remotely. Sensors to detect open doors and windows #### Video camera A video system monitors the access points to the house. It can be used to monitor the system from any room of the house ### Power-failure ## Nanotechnology he term "nanotechnology" refers to the study, design, synthesis, manipulation, and application of materials, devices, and functional systems by controlling matter at the nanoscale. These new, atomically precise structures, such as carbon nanotubes or minuscule instruments to examine the inside of the human body, promise a new technological revolution still difficult to imagine. Specialists in the field expect numerous industrial, scientific, and social breakthroughs. One day, there will be materials that are more resistant than steel vet lighter, cleaner, and more efficient. Among many possible applications that could appear are computers with significantly faster components and molecular sensors capable of detecting and destroying cancer cells in the brain. #### 1 nanometer (nm) is one-billionth of a meter, or one-millionth of a millimeter (0.04 inch). In other words, it is equivalent to dividing 1 inch into 25 million equal parts. COMPARTSONS Water molecule: 0.3 nm Maximum Thickness of a DNA molecule: circumference of a virus 20-250 nn Bacteria: 1.000 n of a bacterium Red blood cell: 7,000 nm Typical a red blood cell human cell: 20,000 nm Thickness 80,000 nn ### Challenges One of the challenges researchers face is how to develop nanotubes of the longest possible length. The longest nanotube to date measures 1.5 inches (4 cm). #### The Crystalline **Structure** The structure formed by atoms once they align affects the properties of the material. One example is pure carbon, which, according to its structure, can become: # Electrical #### **Graphite Fullerenes Nanotubes** A new material More resistant Soft scaly than steel and excellent properties electrical conductors Electrical Carbon Carbon atoms ### **Nanotubes** are currently the stars of the field of nanotechnology. A nanotube is simply an atom layer folded into a tubelike shape one or a few nanometers in diameter Nanotubes were discovered in 1991 and have several surprising features, such as the ability to give them metallic or semiconductor properties of electrical conductivity, among other properties currently under study. 0.6 to 1.8 nanometers in diameter ####
PHYSICAL PROPERTIES Single wall nanotube A comparison Density 0.77 to 0.81 oz/cu in Aluminum has a density of (1.33-1.40 g/cu cm) 1.6 oz/cu in (2.7 g/cu cm) Resistance to tension 6.5 million pounds per square inch (45 billion Very tough steel alloys break at around 290.000 pounds per square inch (2 billion pascal). **Elasticity** They can bend sharply and go back to their original Metals and carbon fibers break when subjected to similar tests. **Electric** current Estimated at 6.5 billion amperes per square inch (1 billion/sq cm). shape without any damage. Copper wires melt at approximately 6.5 million amperes per square inch (1 million/sq cm). Field emission capacity Can activate phosphates with 1 to 3 volts if the electrodes are spaced out at 0.00004 inch (1 μ m). Tips of molybdenum require fields of 15 to 30 volts per foot (50-100 V/m) and have very short life spans. transmission It is predicted to be as high as 3,300 watts per foot per degree Fahrenheit (6,000 W/m/K) at room temperature. An almost pure diamond transmits 1,800 watts per foot per degree Fahrenheit **Thermal** stability Stable even at 5,100° F (2,800° C) in a vacuum environment and at 1,390° F (750°C) in the air. The electrical wires inside microchips melt at between 1.100° F (600° C) and 1,800° F (1,000° C). #### Information technology **Infinite Applications** Molecular nanoprocessors containing chips with microscopic transistors will be at the heart of computers those that exist today. There exist a variety of applications for nanotechnology. The following examples are the most immediate, although most are experimental. The imagination is the only limit. #### **New materials** will be dozens to hundreds of times more resistant than known materials but will also weigh much less. #### Robotics Microscopic robots (nanobots) will, for example he able to travel inside organs and blood vessels to perform diagnostic tests and repairs. #### Cosmetics narticularly highly efficient #### **Transmission of** #### Medicine New medicines. Molecular and genetic renairs Microscopic protein-building machines, among others #### Clothing Highly resistant, intelligent fabrics that do not get dirty or that can repel viruses and bacteria #### **Solar energy** Huge improvements in maximizing this clean and inexhaustible energy source #### **Data storage** There already exists a memory card that measures just 0.005 square inch (3 sq mm) and has a capacity of 100 gigabytes. Electrical links ### electrical energy Superconducting materials that do not suffer a loss of energy during transportation ## Smart Clothing ith the invention of smart fabrics and computerized apparel, our clothing will undergo in the coming years one of the most dramatic and surprising evolutions since humans first began wearing clothes. Some of these new breakthroughs already exist: they are showing up for the first time in the market and are becoming readily available for mass consumption. Among them are materials that integrate features that would have been hard to imagine just a few years ago-for example, clothing that not only informs the wearer of the body's response to physical activity but also modifies itself to improve performance. ## **Smart Fabrics** Generally a product of new developments in nanotechnology, smart fabrics show surprising features that will be widely used in the next few years. A special fiber made of plastic and glass can be used with electronic circuitry that modifies the way the fabric reflects light and thereby changes color. #### Comfortable Fabrics that eliminate sweat, keep the skin dry, and eliminate odors already exist. Similarly, there are materials that can provide ventilation or warmth in accordance with the outside temperature. #### Resistant Fabrics that do not get wrinkled, are resistant to stain, and keep their shape after many years of wear and washing have also been developed. Fabrics that remove static electricity. They prevent the buildup of hair, pollen, dust, and other potentially harmful particles for people with allergies. #### **Antimicrobial** Fabrics that block the growth of viruses, fungi, bacteria, and germs #### **INFORMATION IN REAL TIME** Clothes made out of fabrics with integrated minisensors and imperceptible electrical circuits can determine the wearer's heart rate, blood levels of oxygen and other gases, calories consumed, and breathing rate. Microphone Sensors Database Fiber-optic cable is an element found in the fibers of fabrics that repel germs. One of its properties is that it destroys bacterial cell walls. It is also the basis of bleach, which is frequently used in disinfectants. ### **Perfect Steps** The Adidas-1 shoe, a project three years in the making, can determine the athlete's weight, stride, and surrounding terrain to adjust the shoe's tension accordingly. Inside the hollow heel, the components of the shoe generate a magnetic field. heel of the shoe and modifies A sensor that can perform up to 1,000 readings per second detects each modification and sends that information to the microchip. The motor, rotating at 6,000 rpm, moves the screw, which in turn strengthens or relaxes the heel. The entire process is 5,000,000 Diverse Smart apparel is obviously important to patients with chronic illnesses, such as diabetics, who need to monitor their condition frequently. of great benefit to athletes, but it is also is the number of calculations per second performed by the Adidas-1 When a person is running, the body absorbs three to four times the person's weight each time a step is taken. Smart shoes help absorb this enormous force and protect the most vulnerable areas, and they also provide comfort and stability. **Cut and Paste** selected properties. **Gene Therapies** It is possible to "cut and paste" genes to correct genetic defects Only the first steps have been taken in this specialized field, whose principle is to treat hereditary disorders by modifying a patient's DNA. or, in the case of transgenic organisms, produce new species with Human Genome A thorough understanding of the human genome and of the germs that possible to produce medications that are highly efficient and even can infect and modify it will make it ## Biotechnology he discovery during the 20th century that all the information that is needed to build a living being is found within each cell, written in a code with only four letters (the DNA molecule), led to the inevitable conclusion that the information could be artificially modified to produce ## Artificial Intelligence Ithough the concept of artificial intelligence (AI) had long been present in science fiction, its theoretical basis was not established until the early 1950s. At first, investigators in the discipline tackled the problem with great optimism, but over the years the challenge of creating a machine that could "feel" and behave like a human being with a capacity for abstraction—and on occasion act in an illogical manner—revealed its considerable complexity. Today there are amazing robots that still lack these human qualities. The search for artificial intelligence began in the 1950s. Since then, a number of milestones have been reached. Following are some major milestones. 1950 1956 1962 users/patients, this system can elicit strong emotions from them 1973 1994 The twin cars VaMP and VITA-2, developed by the University of Munich and Mercedes Benz, drive under automatic control, carrying live passengers about 620 miles (1.000 km) around Paris, in traffic, at speeds up to 80 miles per hou champion Garry Kasparov. February 10, 1996, is a red-letter day over a reigning world champion. The in the history of artificial intelligence. On that day, an IBM computer called Deep Blue won a game of chess in a match against the world chess champion, Garry Kasparov, becoming thereby the first computer to triumph game was part of a match in which the Russian player prevailed four to two. In 1997, a rematch was held between Kasparov and Deep Blue, which won by a score of 3.5 to 2.5. 200 million The possible number of positions evaluated each second by the improved version of Deep Blue that defeated worldchess champion Garry Kasparov #### **Humanoids** Their humanlike appearance could spark our imagination and reinforce the impression that the humanoid is a living machine. At present, commercially sold humanoids serve only as a source of entertainment. #### **PAPERO** 1998 Furby, a small pet that resembles a introduced. It can learn to arows up. It becomes a retail sensation talk as it gremlin, is Produced by NEC, PaPeRo is a domestic robot that can recognize the faces of its family members, distinguish colors, read text, dance, and change a TV channel when its owner gives a verbal command. It can tell stories to children, and. by means of its camera eyes, it can send parents images of their children while the parents are at the office. The robot can run at a speed of 3.7 miles (6 km) per hour and walk at 1.7 miles (2.7 km) an hour It has a 52-volt lithium-ion batterv mounted in its backpack. HONDA ASIMO can lift un to 1 pound (0.5 kg) in each hand #### **ASTMO** Honda's bipedal robot ASTMO (Advanced Step in Innovative Mobility) was introduced at the Robodex 2000 exhibition in Yokohama. It can walk, dance, shake hands, carry a tray of drinks like a waiter, and answer simple questions. The current model is about 4 feet 3 inches (1.3 m) tall and weighs 119 pounds (54 kg). Cynthia Breazeal designs Kismet, one 1999 of the first robots to respond to people in a natural manner. A robot made by Sonv. QRIO was the first bipedal robot capable of running. It can run at a speed of 45 ft (14 m) per minute The purpose of the test is to determine whether a machine can be considered intelligent. The challenge consists of having a person converse with a machine and a human being at the same time. If the person cannot decide which interlocutor is the human being the machine has The Turing test is published. passed
the test. For the time being, no machine has succeeded in doing so The researcher Unimation, the first John McCarthy company dedicated to coins the term producing robots, is 'artificial formed. Four years later intelligence" at a computer program called ELIZA becomes a celebrated available. The program Dartmouth Conference uses a dialogue system that simulates a psychotherapist's speech. According to many Freddy, a robot capable of identifying and assembling objects, comes into being at the University of Edinburgh Scotland The chess program Deep Blue wins a game of chess against world chess 1996 ## Virtual Reality s a technology in full development whose object is to deceive the senses to create a variety of sensations. It has explored. The focus has been on forms of entertainment in which the player acts within the created setting and on simulators for training soldiers, pilots, surgeons, and others in extreme situations without placing the trainees at risk. Other promising areas for virtual reality—which combines the capabilities of the most powerful computers with ingenious mechanical devices—are in medicine (especially in the areas of treating phobias and traumas), marketing, and publicity. #### **Images** are created by powerful processors that use various 3-D programming languages. VRML is one of the most widely used, although it is giving way to X3-D, which is more complex. #### **HOW THEY ARE GENERATED** The form of the object is generated and given a skeleton framework that, when animated, can be used to modify the shape and position of the object. Composition Textures, colors, and lighting are applied, all of which help provoke sensations of greater realism. **Programming** The user of the simulation needs to be able to interact with the object by means of the specific characteristics assigned to it. ### Requirement For many years, airline pilots have been required to practice periodically in flight simulators, one of the most widespread applications of virtual reality. HELMET using complex generates 3-D images calculations while it according to the experiencing the the person simulation head movements of changes perspectives Uses electromagnetic and inertial sensors to register hand and arm movements, which are converted into electrical signals and incorporated into the ### **Deceiving the Senses** There are several means by which high-quality virtual reality misleads the sense of sight. These means include the use of special helmets and glasses and of screens that extend beyond the visual field, such as those employed in IMAX theaters. The challenge is to produce Virtual-reality three-dimensional sound that simulations have been simulates environmental sound. developed that use It is necessary to calculate the strong basic odors, but position of an individual with they are expensive. respect to the virtual sound Producing the sensation source and objects. Goodof softer and more quality simulations exist, but complex aromas remains work remains to be done. a long-term goal. Some systems use gloves that can give the wearer the perception that virtual objects are present to the touch. However, a good simulation should at the same time include sensations of temperature, shape, firmness, and force—something that remains a distant goal. There have not been advances with this sense It is believed that to generate taste sensations it will be necessary to stimulate the brain directly with invasive methods akin to the neuronal sockets envisioned in the movie Matrix. Although the perfect virtual-reality setting remains to be created, there are those who already experience new sensations by simply putting on a helmet, a pair of gloves, and special boots. are designed to simulate 3-D sound by such techniques as delaying sound output from different channels by a fraction of a second to create the perception that sound sources are situated at distinct locations. ### **Textures** Researchers recognize that textures are some of the most difficult sensations to simulate. An experimental system that simulates the texture of various grades of sandpaper has been developed in the United States. #### Controllers The most advanced are wireless and detachedthat is, unlike a conventional joystick, the controls are not mounted in any kind of structure. They transmit signals to the unit's processor with infrared radiation, and they can register placement, movement, speed, and acceleration through an inertial system. ### \$739,000,000 was the amount collected worldwide for the movie Matrix Reloaded (the final movie of the Matrix trilogy), making it one of the top 25 box-office hits of all time. #### **BOOTS** function like data gloves by providing information for the simulation. The boots indicate whether the user is running, walking, or resting. #### **Evolution** In almost half a century of evolution. virtual reality has progressed from an ingenious cinematic machine to a very promising complex technology. > Morton Heilig, a cinematographer, constructs the Sensorama. The viewer sits in a chair that can vibrate. The viewer is surrounded by three screens on which a film, such as a bicycle trip through New York City, is projected. It produces smells. currents of air, and other effects. It was the first virtual-reality simulator. Ivan Sutherland, a pioneering computer scientist, proposes the use of a video display that can be placed on a viewer's head and respond to the head's orientation to make simulations more real. The result is the head-mounted display (HMD), whose early models use mirrors in a dual-projection system. 1977: The first data glove is patented. Major development takes place in fighter-aircraft simulators to train pilots using HMD 1989: The U.S. Department of Defense creates SimNet, a simulation system to train troops. Many experimental approaches to touch and smell simulators are developed while simulations for vision and sound are perfected. ### **Perfect Simulation** The *Matrix* trilogy, whose first movie premiered in 1999, presents an idealized virtual reality. It takes place in a world dominated by machines in which human beings live in a fictitious universe. Their brains are connected to a virtual-reality machine that creates such perfect simulations that they cannot even suspect that they inhabit an illusory world. ## Soldiers of the Future or centuries, nations have devised highly diverse means of arming and defending their soldiers. With current developments, the tendency has almost been to think of a soldier as a robotic unit, one that is in constant communication with its fellow soldiers and equipped for combat in any type of terrain, environment, or condition, using weapons that are ever more precise and lethal. Despite these advances, however, the main challenge continues to be that of dealing with the vulnerability of the soldier. Within the most modern uniforms and advanced fighting systems, there is still a human being. In this regard, developments in nanotechnology that could lead to the creation of intelligent uniforms would be truly revolutionary. Multiple antennas receive and emit signals for radio. information. The soldier remains in n the unit, which helps prevent constant contact with other soldiers /lonocular screen can show the soldier position maps and the placement of troops, among other things. It can also show images from unmanned protects against biological and Purification system for food and water provides a constant water and of canned or dried rations, with a menu of 24 items. Lighter and reduce supply of potable chemical weapons GPS, video, and other types of #### **Land Warrior** is a term used to refer to the most modern and technological approach to equipping a ground soldier. It saw limited use in the Iraq War, but the weight of the equipment and its relatively short battery life led to the suspension of the program. Newer technologies were under study to improve it. Camera sight The image it produces can be viewed directly #### can detect persons in absolute darkness by the heat they emit Infrared ### **Control unit** M16 round. The soldier uses it to control all the systems #### Modular ceramic vest Divided into plates, it protects the soldier from projectiles the size of an **Energy for the system** The system is equipped with lithium batteries and can operate for 24 hours #### Waterproof material maintains normal body temperature. even in extreme conditions The cost of developing the Land Warrior project over 10 years. Arming each soldier costs less than \$30,000. #### **Unmanned Vehicles** have been designed to provide support, firepower, and reconnaissance without the presence of a human #### COUGAR It provides a high level of firepower without risking the lives of human occupants. Unmanned ground attack vehicle. of a few types of UAVs (unmanned would not be able to tolerate. aerial vehicles). UAVs can perform very abrupt maneuvers that a human crew #### MULE A terrestrial vehicle designed for a variety of uses that include transportation, mine detection, and assistance providing air support. integrates infrared vision sensors for chemical and biological weapons, and night-vision cameras. It that the soldier can use has a head-up display to monitor the surrounding area. systems, heat sensors, Lightweight and waterproof, the uniform maintains body temperature and can change color depending on the Sensors for detecting toxins. A microchip uses the information to release specific antidotes to protect the soldier Biological detectors to monitor such readings as the soldier's blood pressure and pulse Automatic treatment of wounds by means of intelligent cloth Masking of body temperature to evade enemy infrared Gecko technology to help the soldier climb could be used to store energy from movements by means of kinetic cells. ### **In the Long Term** Although most of these systems are currently under development, it is unlikely that they will constitute part of
regular-issue military equipment before the first 25 years of the 21st century. - Food with biomarkers that help in identifying troops remotely - **High-nutrition** - protein coating provide shielding from enemy sensors. - Biometric constantly monitor physiological indicators. #### pressure on a wounded part of the body. **Improved** applies precise Clothing to #### can improve the oxygen supply to specific tissues and provide supplementary energy to specific #### **Thermophysiology** Technology for precisely controlling body temperature **Future Force Warrior** is a planning program for soldiers of the next defense, vision, and detection will be integrated in nanotechnology could lead to "intelligent" uniform Precision bullets that are aimed at a target by detectina hody heat Intimidatior In addition to having lethal systems and weapons, technological soldiers can with their appearance alone produce a psychological impact on the enemy decade. Various technological systems for the helmet, and the development of Small reconnaissance and surveillance aircraft. Some versions can carry armament to attack specific targets. ## Space Exploration y the end of the 20th century, all the planets of the solar system had been visited by space probes, including Uranus and Neptune, the most distant planets. In some cases, the visit was only a flyby mission, which nevertheless provided data impossible to obtain from the Earth. Other missions have involved placing space probes in orbit around a planet. Yet other missions have landed probes on Venus, Mars, and Titan (one of Saturn's moons). In 1969, humans succeeded in walking on the Moon, and there are now plans to send humans to the planet Mars. ### **Unmanned Spacecraft** All planetary missions have been accomplished with unmanned spacecraft. When possible their voyages have taken advantage of the gravitational field of one or more planets in order to minimize fuel requirements. #### **Space Shuttle** The manned spacecraft that has been used the most since its first launching in 1981. The shuttle, however, cannot go beyond a 430mile (700-km) Earth orbit. Visited in 1974-75 by Mariner 10 on three flybys, with a closest approach of 203 miles (327 km). The probe mapped 45 percent of the planet and made various types of measurements. In 2011, the probe Messenger will enter orbit around Mercury after making flybys in 2008 and 2009. Distance from the Sun 67,000,000 miles 93,000,000 miles Many artificial satellites and manned missions have orbited and continue to Space Station always has orbit the Earth. The The Apollo missions (1969-72) took a total of 12 astronauts to the surface of the Moon. They are the only missions that have taken humans beyond the Earth's orbit. The United States and China are preparing new manned The most visited celestial body after the Moon, Venus has been studied by orbiting spacecraft and by landers, many in the 1970s and 1980s. During the Vega and Venera missions and the Mariner and Magellan missions, the surface of the planet was mapped and even excavated, and the atmosphere was analyzed. At present, the spacecraft Venus Express is studying the planet from orbit. 141,600,000 miles The giant of the solar system was visited for the first time by Pioneer 10 in 1973. Another seven spacecraft (Pioneer 11, Voyagers 1 and 2, Ulysses, Cassini, Galileo, and New Horizons) have made flybys of the planet since then. Galileo studied Jupiter and its moons for eight years from 1995 to 2003, and it transmitted images and data of incalculable scientific value. In 1986, Uranus was visited by Voyager 2, which took photographs and readings of the planet. It is the only mission that has reached The time it took for the Cassini probe to travel from the Earth as far as Jupiter. Galileo reached Jupiter in six years. Only four missions have visited Saturn. The first three—Pioneer 11 (1979), Voyager 1 (1980), and Voyager 2 (1981)—flew by at distances of 21.000 to 220.000 miles (34.000 to 350.000 km) from the planet. Cassini, in contrast, was placed in orbit around Saturn in 2004, and it has obtained amazing images of the planet and its rings. Part of the Cassini mission was to launch the Huygens probe, which successfully landed on the surface of Saturn's mysterious moon Titan. The distant blue giant has been visited only once, in 1989, by Voyager 2. ### Eros In 2000, the probe **NEAR** entered orbit around the asteroid 433 Eros. In 1986, six spacecraft, among them Giotto, reached In 1965, Mariner 4 took the first 22 close-up images of Mars. Since then the planet has been visited by many orbiters and by probes that have landed on its surface. Among the most noteworthy are the missions of Viking (1976), Mars Pathfinder (1997), Mars Global Surveyor (1997), and the Mars Exploration Rovers (2004). 1,780,000,000 miles ## **Beyond the Solar System** Having left behind the orbit of Neptune, the space probes Pioneer 10 and 11 and Voyager 1 and 2 are bound for the edge of the solar system. #### Pioneer 10 and 11 They were launched in 1972 and 1973 and visited Jupiter and Saturn. Contact with the probes was lost in 1997 and 1995, respectively. They carry a plaque with information about the Earth and human beings in anticipation that they may eventually be found by an extraterrestrial toward the star Aldebaran, which it will reach in 1,700,000 years. #### Voyager 1 and 2 Launched in 1977, they carry a gold-plated disk with music, greetings in various languages, sounds and photographs from the Earth, and scientific explanations. The probes passed Jupiter, Saturn, Uranus, and Neptune and remain in contact with the Earth. Some data indicate that in 2003 Voyager 1 might have crossed the heliopause, which is at the outer reaches of Saturn 2,800,000,000 miles 483,000,000 miles 887,000,000 miles ## Extrasolar Planets or centuries, there has been speculation about the possible existence of planets orbiting other stars in the universe in the same way that the planets of the solar system, including the Earth, revolve around the Sun. Nevertheless, it has been only a little more than a decade since it has been possible to detect such bodies—albeit indirectly—thanks to new telescopes and measuring devices with increased sensitivity. The confirmation of the existence of these extrasolar planets suddenly increases the possibility that life might exist in other corners of the cosmos. #### **Distant Worlds** By late 2007, astronomers had detected more than 225 possible planets in about 200 extrasolar planetary systems. These figures indicate that many of these extrasolar planets form part of a system in which, like the solar system, more than one planet is in orbit around a star. #### The First Photograph? In 2004, photographs were taken that might be the first images of stars with extrasolar planets, namely 2M1207b and GQ Lup b (shown in photo). However, it is still under discussion whether these small bodies are true planets or brown dwarfs. #### **GASEOUS PLANETS** Almost all the extrasolar planets detected to date are gaseous giants like those of the solar system—Jupiter, Saturn, Uranus, and Neptune. ## 1.2 days The time it takes the planet OGLE-TR-56 to orbit its star: it is the shortest orbital period #### Notable Extrasolar Planets Among the extrasolar planets that have been detected, there are surprising differences in their characteristics. #### The First Pegasi 51 b Discovered in 1995, it was the first extrasolar planet found orbiting a normal star. It is a gaseous planet that has about one-half the mass of Jupiter and lies 47.9 light-years from the Earth. #### The Hottest HD 149026 b This gaseous planet is similar to Saturn in terms of mass but smaller in size. It orbits its star at 25th the distance of the Earth from the Sun, and its surface temperature may be more than 2,700° F (1,500° C). #### The Most Massive Undetermined There are several large planetary bodies that are as much as 11 times as massive as Jupiter. Planet-sized objects with a mass above this value are considered to be almost starlike bodies; they are called brown dwarfs and their classi- fication is in question. #### The Smallest Gliese 581 c Located about 20 lightyears from the solar system, it is one of the extrasolar planets thought most likely to resemble the Earth. Its diameter is only 50 percent larger than that of the Earth. #### The Closest Epsilon Eridani b This gaseous Jupitersized giant orbits the star Epsilon Eridani, which has characteristics similar to the Sun, although it is somewhat smaller and not as bright. It is only 10.5 light-years from the solar system. #### The Most Distant OGLE- 2003 -BLG-235 This planet was discovered in 2004 by means of a phenomenon called gravitational microlensing. It is a gaseous giant that revolves around a star at a distance four times greater than that between the Earth and the Sun, and it is about 19.000 light-years away. #### **STAR** Planetary systems have been found around almost every type of star, including binary and tertiary stars and stars of various sizes and temperatures, a fact that considerably increases the possibility that some planetary systems might be #### ROCKY PLANETS With just a few exceptions, the instruments currently used are not able to detect rocky planets like the Earth or Mars. These are the types of planets sought by astronomers, since they are the most likely to be ## vears The age of planet PSR B1620-26b, the oldest of all the known extrasolar planets; this planet orbits a system of binary pulsars. The muchyounger Earth is "only" about five billion years old. #### A World Similar to the Earth Of the many extrasolar planets reported by astronomers, Gliese 581 c is the world most like the planet Earth. It orbits a red dwarf star, and it is believed that it might have the basic conditions for the development of life. - **Size:** 7,930 miles - (12,756 km) in diameter ■ Mass: 13.17 x 1024 pounds (5.976 x 1024 kg) - Distance from its star: 93 million
miles (150 million km), or 1 AU - Temperature: between -112° and 122° F (-80° and 50° C) - **Orbital period:** 365 days - Water: in gaseous, liquid, and solid states #### GLIESE 581 c - Size: 1.5 times the diameter of the Earth - Mass: 4.83 times the Earth's mass - Distance from its star: One 14th the distance of the Earth from the Sun (0.07 AU) - Temperature: unknown, but believed to be between 27° and 104° F (-3° and 40° C) - Orbital period: 13 days - Water: It would have conditions suitable for the existence of liquid water. #### Indirect Detection and they always lie in the glare of the star that they orbit. Therefore, they is at present almost impossible. The extrasolar planets are dark bodies very distant from the solar system, can generally only be detected by indirect methods, because "seeing" the planet SPECTRUM SHOWING REDSHIFT The gravitational force of the planet causes a slight movement of the star toward the planet. The spectrum of the light from the star will show a redshift, which indicates that star is moving away from the Earth. When the planet is situated at the opposite side of its orbit, the spectrum of the star will show a blueshift, which indicates that the star is moving This process repeats itself over and over, revealing the existence of a planet. For the movement of a planet's star to be noticeable, the planet must exert an appreciable gravitational force, which for the present means that it is only possible to detect planets that have at least four times the Earth's mass. ## Tunneling Microscope any applications of nanotechnology continue to be explored and developed, but it was the development of the scanning tunnel microscope (STM) that made it possible to see atoms and molecules for the first time. However, this marvelous machine, whose operation is based on the quantum-mechanical concept known as the tunneling effect, is also a powerful tool. Researchers are beginning to use this new tool in the surprising new technology of manipulating individual atoms and molecules to construct novel materials and structures at a nanometer scale. THE STM PROBE The tip of the probe is an electrical conductor that is free of oxides and comes to as sharp a point as possible—ideally a single atom. #### THE SAMPLE for an STM must be either metallic or a semiconductor, and it must be very smooth. Its surface roughness should be less than one thousandth of a millimeter. #### The STM in Action To see atoms the STM reads the surface of an object with an extremely fine point, comparable to the way a person can use the tip of a finger to read Braille by detecting patterns of raised dots. The process for reading the surface at an atomic scale requires producing a tunneling current between the STM probe and the sample. For this reason, the entire microscope functions like an electrical circuit. ### The Art of Seeing the Small With the invention of the optical microscope by the early 17th century, it was possible for the first time to overcome the limitations of vision to peer into the world at ever-smaller scales. This invention was followed by the electron microscope, invented around the middle of the 20th century. With the introduction of the scanning tunneling microscope in the 1980s, it was finally possible to image individual atoms. #### **HUMAN EY** **Resolution: one tenth of a millimeter** #### OPTICAL MICROSCOPE Uses visible light focused by lenses. The microscope's resolution is limited by the size of the wavelengths of light. Magnification up to 2,000 times Resolution: 200 nanomete Images: transparent, two dimensional #### TRANSMISSION ELECTRON MICROSCOPE It illuminates the sample with focused beams of electrons—that is, it uses shorter wavelengths than those of visible light and thereby overcomes light's limitation. Magnification up to 1,000,000 times Resolution: 0.5 nanometers Images: transparent, two dimensional #### SCANNING ELECTRON MICROSCOPE scans the sample with a beam of electrons and reads the surface. Magnification of up to 1.000,000 times **Resolution:** 10 nanometers Images: opaque, three dimensional #### **SCANNING TUNNELING MICROSCOPE** Based on quantum principles, it makes atomic-scale imaging possible. Magnification of up to 1.000.000.000 ation | | | | Resolution: 0.001 nanometer 0,000 (vertical) and 0.1 nanometer (horizontal) Images: three-dimensional graphical images of atomic structures #### THE TUNNELING CURRENT is a current of electrons that pass between the sample and probe by means of the tunneling effect. The current is generated by applying a voltage between the sample and the probe. The intensity of the current varies according to the distance between the tip of the probe and the sample—in other words, according to the relief of the sample. The physicists Gerd Binnig (German) and Heinrich Rohrer (Swiss) in 1981 for Physics in 1986. established the theoretical groundwork for the development of the STM. For this work they were awarded the Nobel Prize #### The Result is a graphic that shows the peaks and valleys of the sample's atomic and electronic structure. The processor converts the variations — in tunneling-current intensity registered by the probe into graphics that represent the atomic structure at the surface of the sample. ### **The Tunneling Effect** #### IN CLASSICAL PHYSICS a particle cannot pass through an energy barrier (a potential barrier) if the energy of the barrier is greater than that of the particle. #### **IN QUANTUM MECHANICS** a particle does not have a concrete location. Instead, the particle has wavelike properties and its position is defined in terms of a probability cloud, which extends beyond the barrier. In this way, the particle can cross the barrier by, in effect, tunneling through it. The wave is but a part of it Thanks to the tunneling effect, electrons pass from the STM probe to the sample despite the barrier presented by the vacuum between them. The strength of this tunneling current is measured to determine the placement of the atoms on the sample being studied. #### **Manipulation of Atoms** One of the most astonishing applications of STM is the manipulation of individual atoms and molecules as building blocks in microscopic constructions. This experimental technology might lead to the creation of new materials with unsuspected properties. The tip approaches the atom until it almost touches. The attractive forces generated by the tip of the probe can then pull the atom along the surface of the sample. Hydrogen ions (single protons) or lead ions ## Hadron Collider PS LHCb he Large Hadron Collider (LHC) is a very large scientific instrument at the European Organization for Nuclear Research (CERN). It is installed in an underground tunnel that is in the form of a ring about 5.3 miles (8.5 km) in diameter and underlies the border between France and Switzerland. The function of the instrument is to make particles collide with great energy to break them apart and obtain data concerning the basic forces of the universe. This information can lead to the discovery of new elementary particles as well as confirm the presence of elementary particles whose existence has only been determined theoretically. Collision of particles ## The Complex is made up of a number of tunnels in the form of rings, each of which raises the energy of the particles for the next ring. Superconducting magnets accelerate and guide the particles. Six experiments analyze the results of the ### **Large Hadron Collider** ATLAS 1.40 mile (2.25 km) SPS In the LHC, either high-energy protons or high-energy lead ions collide against each other. Upon breaking apart as a result of the collisions, fundamental particles are generated in millionths of a second 5.30 miles (8.53 km) #### **CMS Detector** collide with each other. This instrument, which weighs 13,800 tons (12,500,000 kg), is designed to analyze the particles (such as photons, muons, and other fundamental particles) that are generated between protons at extremely high energies and to determine their mass, energy, and speed. **Superconducting magnets** Cooled to almost absolute zero (about -459º F, or -273º C) with liquid nitrogen, the magnets are the largest that have ever been built. They impart high energy to the particles and guide them. **ALICE** permits the detection of this fundamental particle and allows for the measurement of its mass and velocity. ## Big Bang 150 feet (45.7 m) **ATLAS DETECTOR** An instrument designed to explore, through particle collisions, the fundamental nature of matter and the basic forces that govern the universe. It weighs 7,700 tons (7,000,000 kg). The Large Hadron Collider, by obtaining data concerning elementary particles and fundamental forces, will make it possible for us to learn the properties of the universe a fraction of a second following the big bang, the great initial explosion of the universe ### A Record of the Collision The particles that collide at high energy produce many elementary particles that exist for only millionths of a second, and they must be detected and analyzed in that short amount of time. #### **CMS** Charged hadron --- Neutral hadron that will collide Hadrionic calorimeter records the energy of the hadrons and analyzes atomic nuclei. ### calorimeter precisely measures the energy of lightweight elementary particles, such as electrons and photons. It tracks charged particles and measures their speed and mass. of the particles 92 GLOSSARY ## Glossary #### Alphanumeric Made up of letters, numbers, and other characters. #### AM In telecommunications, amplitude modulation (AM) is the linear modulation of a wave that carries information. AM works by varying the amplitude of the wave in relation to the variations of information being sent. #### Amino Acid Type of molecule that contains a carboxyl group (-COOH) and a free amino group (-NH2). It is generally represented as NH2-CHR-COOH, where R is a radical or a side chain typical of each amino acid. Many amino
acids build proteins. #### Amplitude In wave mechanics, the amplitude of a wave is its maximum value, both positive and negative. The maximum positive value is known as the peak, or crest, and the negative value is the trough, or valley. #### Analgesic Any medical or paramedical procedure that relieves or eliminates pain. Although the term is sometimes used to describe any substance or mechanism that relieves pain, it usually refers to a group of drugs from a number of chemical families that relieve or eliminate pain in various ways. #### Antipyretic Drug that reduces fever. Antipyretics include acetylsalicylic acid (aspirin), dipyrone, and paracetamol. The term comes from the Greek prefix anti-, meaning "against," and pyr, meaning "fire," or "fever." Antipyretics tend to be drugs that treat fever symptomatically; that is, they do not act on the underlying cause of the fever. #### Artery In anatomy, a blood vessel that carries blood away from the heart to the rest of the body. Arteries are membranous, elastic ducts with diverging branches that distribute throughout the body the blood expelled from the ventricular cavities on each systole. Each chromosome is made up of a single macromolecule of DNA with associated processing and the processing of the processing and #### Atomic Number The number of protons found in the nucleus of an atom. It is traditionally represented by the letter Z. The atomic number uniquely identifies a chemical element and represents a fundamental property of the atom: its nuclear charge. #### Catalyst Substance capable of accelerating or delaying a chemical reaction while remaining unaltered (it is not consumed by the reaction). This process is called catalysis. Catalysts do not alter the final energy balance of the chemical reaction; instead, they allow equilibrium to be reached at a faster or slower speed. In the natural world, there are biological catalysts, or biocatalysts, and the most important of these are the enzymes, although some ribonucleic acids also have catalytic capabilities. #### Catheter In medicine, a device that can be inserted into a body cavity or vein. Catheters allow injection of drugs, drainage of fluids, or access of surgical instruments. #### Cell Main structural and functional unit of living organisms. The term comes from the Latin word *cellula*, meaning "small compartment." #### CFC Abbreviation for chlorofluorocarbon, which is the name of each of the compounds of saturated hydrocarbons obtained from substituting hydrogen atoms for chlorine or fluorine atoms. Because of their high physical and chemical stability, CFCs have been widely used as liquid refrigerants, extinguishing agents, and aerosol propellants. Their use has been prohibited by the Montreal Protocol because they destroy the ozone layer of the stratosphere, 30 miles (50 km) above sea level. #### Chromosome Long molecular strand within the central nucleus of a cell that contains genetic material. Each chromosome is made up of a single macromolecule of DNA with associated proteins. The number of chromosomes is constant for any given species. Humans have 46 chromosomes. #### Convection Convection is one of three ways to transfer heat: it does so by transporting matter between areas with different temperatures. Convection occurs only in fluids (which include gases). When a fluid is heated, its density is reduced and it rises upon being displaced by cooler portions of the fluid. These portions in turn are heated, repeating the cycle. The result is heat transfer by means of portions of the liquid ascending and descending. #### **CPU** Abbreviation for central processing unit. This component executes program instructions and controls the functions of the different components of a computer. It is usually integrated into a chip called a microprocessor. #### Diffraction In physics, diffraction refers to phenomena associated with wave propagation, such as the spreading and bending of waves when they meet an obstacle. Diffraction occurs with all types of waves, whether they are sound waves, waves on the surface of a fluid, or electromagnetic waves, such as light waves and radio waves. In the electromagnetic spectrum, the lengths of X-ray waves are similar to the interatomic distances within matter. Therefore, the diffraction of X-ray waves is used as a method to explore the nature of crystalline structures. This technique allowed for the discovery of the double helix structure of DNA in 1953 #### Diode Device that allows an electric current to flow in one direction. Below a given difference of potential, a diode behaves like an open circuit (that is, it does not conduct), and above it the diode behaves like a closed circuit, with very little electrical resistance. Because of this behavior, diodes are usually called rectifiers, as they can convert alternating current to direct current. #### DNA Abbreviation for deoxyribonucleic acid. This is the primary chemical component of chromosomes and the material from which genes are made. Its function is to provide instructions needed to construct a living organism that is identical to the original (or almost identical, such as when it combines with another chain, as in the case with sexual reproduction). DNA is a polymer whose monomers are made up of a phosphate group, a deoxyribose, and a nitrogen base. These four bases are adenine (A), guanine (G), cytosine (C), and thymine (T). The DNA structure is a long chain of nucleotides in the shape of a double helix. #### **Electromagnetic Radiation** Combination of electric and magnetic fields, oscillating and perpendicular to each other, that propagates through an area, transporting energy from one place to another. As opposed to other types of waves, such as sound, which need a material medium to propagate, electromagnetic radiation can travel through a vacuum. #### Enzyme Biomolecule that catalyzes chemical reactions. The term comes from the Greek word *enzyme* meaning "in yeast." Enzymes are proteins. Some RNA fragments are also able to catalyze reactions related to the replication and maturation of nucleic acid. #### EVA Abbreviation for ethylene vinyl acetate. It is also known as foam rubber. EVA is a thermoplastic-type polymer that is weather resistant and chemical resistant. It has low water absorption, is environmentally friendly, and can be thrown away, recycled, or incinerated. Applications include school supplies, footwear, set design, and handicrafts. It can be washed, and it is nontoxic. #### FM In telecommunications, frequency modulation. It is the process of coding information in a carrier wave, either in digital or analog form, by instantaneous variation in its frequency according to changes in the input signal. #### Frequency In wave mechanics, the number of oscillations (or complete cycle) of a wave per unit of time (generally per second). The average human ear can perceive frequencies between 20 and 20,000 hertz (cycles per second). #### Gene Basic unit of inheritance in living organisms. Molecularly, a gene is a linear sequence of nucleotides inside a DNA molecule that contains all the necessary information to synthesize a macromolecule with a specific cellular function. Genes are found inside every chromosome and occupy a specific location known as a locus. The set of genes in a species is called its genome. #### GMO Abbreviation for genetically modified organism, an organism whose genetic material has been deliberately designed or altered. The first GMOs date back to the 1950s, when commercial strains of yeast were modified through radiation. The genetic modification of organisms is an issue of great controversy. Environmental organizations such as Greenpeace warn that the risks of GMOs have not yet been fully investigated and that GMO crops can escape control as they disperse through the action of wind and birds, thus polluting native crops. On the other hand, supporters of GMO development argue that this type of technology can alleviate world hunger and reduce the impact of certain sicknesses (for example, it is possible to grow enriched rice that can prevent infectious disease, or cows can produce vaccines or antibiotics in their milk). Because of public pressure on this issue, legislative bodies in many countries are taking it into consideration and mandating, for example, explicit labeling of foods that contain GMO soy or corn as an ingredient. #### **GPS** Abbreviation for Global Positioning System, a system that can determine the precise location, within inches, of a person, car, or ship anywhere in the world. GPS utilizes a network of 24 main satellites with synchronized orbits to cover the entire surface of the Earth. #### Graffiti Letters or images scrawled on private or public property, such as walls, cars, doors, and street fixtures. In everyday language, the term also includes what is known as vandalism—in other words, signs, usually with political or social messages, painted without the property owner's consent. Sometimes slogans that became popular using these techniques have also been called graffiti, such as the ones that appeared during the revolts of May 1968 in Paris: "Power to the imagination" and "Beneath the pavement is the beach." #### Hardware The physical parts of a computer. Hardware includes electronic and electromechanical devices, circuits, cables, cards, boxes, peripherals, and other physical elements related to a computer. #### Hertz The unit of frequency of the International System of Units. The hertz is named after the German physicist Heinrich Rudolf Hertz, who discovered the transmission of electromagnetic waves. One hertz (Hz) represents one cycle per second, where a cycle is the repetition of an event. #### Logarithm In mathematics, a logarithm is the inverse function of an exponential function. Thus, the logarithm to base b of a number x is the exponent to which the base has to be raised to obtain the given number. For the equation bn = x, the logarithm is a
function that gives n. This function is written as n = logb x. #### Macromolecule Molecule with large molecular mass and high numbers of atoms. Macromolecules are generally the result of the repetition of one or a small number of minimal units (monomers) that make up polymers. They can be organic or inorganic, and many macromolecules are important to the field of biochemistry. Plastics are a type of synthetic organic molecules. 94 GLOSSARY #### Microprocessor Highly integrated set of electronic circuits used for computational calculations and controls. In a computer, this is the central processing unit (CPU). #### Modulation In telecommunications, the set of techniques that convey information in a carrier wave. These techniques allow more efficient use of communication channels, thereby facilitating the simultaneous transmission of information while protecting it from possible interference and noise. #### Monomer Small molecule that may become chemically bonded to other monomers to form a polymer. The term comes from the Greek words *mono*, meaning "one," and *meros*, meaning "part." #### NTSC The analog television encoding and broadcast system developed in the United States around 1940. It is named for the committee that developed it, the National Television Standards Committee. The NTSC standard is currently in use throughout most of North and South America and in Japan and India, among other countries. #### **OCR** Abbreviation for optical character recognition. It is a type of computer software designed to translate images of a text and store them in a format compatible with word-processing programs. In addition to the text itself, it can also detect the format and language. #### PAL Color-encoding system used in the broadcast of analog television systems in most of the world, PAL stands for phase alternating line. Developed in Germany, it is used in most African, Asian, and European countries, as well as in Australia and some Latin American countries. #### Photoelectric Cell Also known as photovoltaic cell, an electronic device that is sensitive to light and that can produce electricity from light. A group of photoelectric cells is called a photovoltaic panel, a device that converts solar radiation into electricity. #### Polymer Organic macromolecule composed of smaller molecules called monomers. The term is derived from the Greek words *polys*, meaning "many," and *meros*, meaning "parts." #### Praxinoscope Optical device invented in 1877 by Émile Reynaud. It used a strip of pictures placed around the inner surface of a series of spinning cylinders. A system of mirrors allowed the viewer, looking down into the cylinders, to experience the illusion of motion. In 1889, Reynaud developed the Théâtre Optique, an improved version capable of projecting images on a screen from a longer roll of pictures. This precursor to animation was soon eclipsed in popularity by the photographic film projector of the Lumière brothers. #### Propellant In aerosol spray cans, the propellant is the gas used to expel substances. CFCs were often used until it was discovered that they had negative effects on the atmosphere's ozone layer. Another propellant used in aerosol containers is butane. #### Prostaglandin Any member of a group of substances derived from fatty acids containing 20 carbon atoms. They are considered cellular mediators with a variety of effects that are frequently in opposition. The name "prostaglandin" derives from prostate gland. When prostaglandin was first isolated from seminal fluid in 1936, it was believed to be part of the prostatic secretions. In 1971, it was determined that acetylsalicylic acid could inhibit the synthesis of prostaglandins. The biochemists Sune K. Bergström, Bengt I. Samuelsson, and John R. Vane jointly received the 1982 Nobel Prize for Physiology or Medicine for their research on prostaglandins. #### Recycling Process of reusing parts or elements of an object, technology, or device that can still be used, despite belonging to something that has already reached the end of its useful life. #### Semiconductor Substance that behaves like a conductor or an insulator depending on the surrounding electric field. Silicon is used to create most semiconductors. Other semiconductor elements are germanium, selenium, tellurium, lead, antimony, sulfur, and arsenic. #### SMS Abbreviation for short message service. Usually called text messaging, SMS is a means of sending short messages to and from mobile phones, landline phones, and other handheld devices. SMS was originally designed as part of the GSM (global system for mobile communications) standard but is now available on a wide range of networks, including 3G (third-generation) networks. #### Software The set of programs and procedures that enable a computer to perform specific tasks. The term is used in contrast to the physical components of the system (hardware). ### Specific Weight Weight per unit volume of a material. In the United States, it is measured in pound-force per cubic foot (lbf/cu ft). In the metric system, it is measured in kgf/cu m, and in the International System of Units, it is measured in N/cu m. #### Stroboscope Instrument used to make a cyclically moving object appear to be stationary or slow moving. It allows turning lights on and off at a given interval any number of times. This device was used on record turntables as an indicator that the turntable was revolving at the right speed. The stroboscopic effect is what creates, for instance, the feeling of movement in a cartoon. #### Telecommunications Technique that allows the transmission of a message from one point to another, usually bidirectionally. The term is derived from the Greek word *tele*, meaning "distance." The term encapsulates all forms of long-distance communication (radio, telegraph, television, telephone, data transmission, and computer networks). #### Thermodynamics Branch of physics that studies energy—the way it is transformed into its various manifestations, such as heat, and its capacity to produce work. It is closely related to statistical mechanics, from which one can derive many thermodynamic relationships. Thermodynamics studies physical systems at the macroscopic level, whereas statistical mechanics usually describes the same phenomena at the microscopic level. #### Toner Also known as "dry ink" because of its functional similarity to ink, toner is a fine powder, usually black, that is deposited on the paper to be printed by way of electrostatic attraction. Once the pigment adheres, it binds to the paper by applying the necessary pressure or heat. Because there are no liquids involved, the process was originally called xerography, from the Greek word *xeros*, meaning "dry." #### Transgenic See GMO. #### Transistor Semiconductor electronic device used to amplify electric currents, generate electric oscillations, and perform modulation, detection, and switching functions. Its name is a combination of the words "transfer" and "resistor." #### Trigonometry Trigonometry, which in Greek means "triangle measure," is a branch of mathematics that studies angles, triangles, and the relationships between them (trigonometric functions). There is an enormous number of applications of trigonometry. For example, the technique of triangulation is used in astronomy to measure the distance to nearby stars and in geography to measure distances between landmarks; it is also used in satellite navigation systems. #### **Tungsten** Tungsten, also called wolfram, is a chemical element that has the atomic number 74 and belongs to group 6 of the periodic table of elements. Its symbol is W, and it is the only chemical element with two common names. Tungsten is a scarce metal that is found in certain minerals located in the Earth's crust. It is steel-gray in color, is very hard and heavy, and has the highest melting point of all the elements. It is used in light-bulb filaments, electrical resistors, and (when alloyed with steel) tool manufacturing. #### Vein In anatomy, a vein is a blood vessel that carries blood from the capillaries toward the heart. There are more veins in the human body than arteries, and the precise locations of veins vary much more from person to person. #### Wavelength In wave mechanics, wavelength is the distance, measured in the direction of the propagating wave, between repeating units of the propagating wave at a given frequency, such as peaks or adjacent valleys. #### Zoetrope Stroboscopic optical mechanism invented in 1834 by William George Horner. It consisted of a cylinder with vertical slits cut along the sides. The spectator looked through the slits at the pictures on the opposite side of the cylinder's interior. As the cylinder spun, the viewed images produced the illusion of motion. It was a very popular toy at the time and one of the precursors of cinematography. The term is derived from the Greek words zoe ("life") and trope ("turn"). 96 INDEX **TECHNOLOGY 97** ## Index | A | |--| | AbioCor artificial heart, 66, 67 | | abstraction, artificial intelligence, 78 | | active circuit, 36 | | adenine, 76, 77 | | Adidas-1 athletic shoe, 75 | | agriculture, 34, 76 | | AIBO (robot pet), 78 | | Al Burj Tower (United Arab Emirates),31 | | Aldebaran (star), 85 | | Alzheimer's disease, 56, 57 | | amino acid, 76 | | analog information, 19, 20, 21 | | animal, transgenic, 76 | | Apollo missions, space exploration, 84 | | application software, 38 | | arm, bionic implants, 62 | | artificial heart, 66-67 | | first permanent implant, 66 | | implanted components, 67 | | operation,66-67 | | survival period, 67 | | artificial intelligence (AI), 5, 78-79 | | ASIMO robot, 79 | | automatic control cars, 78 | | Deep Blue chess program, 78, 79 | | development milestones, 78-79 | | ELIZA computer program, 78 | | humanoid robot, 79 | | pet robots, 78, 79 | | robots, 78, 79 | | Turing test, 78 | | artificial limb: See bionic
implant | | artificial satellite, 33, 35, 40, 44, 84 | | ASIMO (robot), 79 | | astronomy | | extrasolar planets, 86-87 | | lasers, 49 | | Solar System exploration, 84-85 | | athletic shoe, 26-27, 75 | | Adidas-1, 75 | biomechanics of racing, 27 history and evolution, 26 iPod interaction, 9 lateral movement, 26 pronation, 26 structure, 26 types, 27 Atlas detector, Hadron Collider, 90 automated teller machine (ATM), 6 Bacon, Roger, 43 bar-code scanner, 24 Betamax, 20 Big Bang, Hadron Collider, 91 Binnia, Gerd, 88 bionic implant, 62-63 experimental bionic arm, 62 Proprio Foot, 63 biotechnology, 76-77 DNA, 76 gene therapy, 77 human cell, components, 76 human genome, 77 transgenic organisms, 76, 77 blog, 40 Blu-ray DVD, 15 blue laser, 15 blueshift, 87 Bluetooth wireless technology, 16, 17, 22, 33 Breazeal, Cynthia, 79 brown dwarf (star), 86 browser, Internet, 40 building skyscrapers, 30-31 smart house, 70-71 Burj Dubai Tower (United Arab Emirates), 30-31 cable television, 22, 41 calculator, 6 calotype, photography, 18 camcorder, 7 camera, 12, 20 See also digital camera camera obscura. 18 cancer, diagnosing, 56 capacitor, 36 car, robots, 78 carbon, nanotechnology, 72 Cassini mission, space exploration, 85 CCD (charge-coupled device), 18, 20 CD (compact disc), 14, 15 cellular technology, 22, 23 cellular telephone, 23, 28, 32-33 Bluetooth technology, 22, 33 history and evolution, 32-33 international calls, 33 iPhone, 33 operation, 32-33 roaming mode, 33 chat service. Internet. 40 chess, Deep Blue, 78, 79 chromosome, 76 **cinema.** invention, 5 cinematography, 12, 28, 42-43 color, 42, 43 early projection systems, 43 evolution, 43 IMAX technology, 12-13, 42, 80 movie set. 43 sound, 42 Technicolor camera, 43 3D movies, 12-13, 42 clock, 5, 35 clothing: See smart clothing CMS detector, Hadron Collider, 91 coaxial cable Internet connection, 41 Internet: television companion robot, 68 communication: See cellular telephone: computer, 6, 29, 38-39 access devices, 38 application software, 38 computer chips, 29, 36-37 expansion slot, 39 first computer, 28-29 Internet, 40, 41 iPods, 9 laptop, 38 memory, 39 operating system, 38 operation, 39 personal computer, 38 scanners, 25 smart houses, 71 storage devices, 39 **computer chip, 29, 36-37** computer scanner, 24 computerized tomography (CT), 24, 54, 56, 57 concrete, skyscrapers, 30-31 cooking, microwave ovens, 23 Cougar (unmanned vehicle), 82 creative ability, 5 crystalline structure, 72 cursor, 38 cutting-edge technology, 68-91 cytoplasm, 76 **cytosine**, 76, 77 daguerreotype, 18 daily life, technology applications, 6-27, 32-33 analog information, 19, 20, 21 digital information, 14, 19, 20, 21, 24, 46 nanotechnology, 73 data glove, 81 Deep Blue (chess program), 78, 79 diffuser, LCDs, 10 digital camera, 18-19, 20, 21 digital fingerprint scanner, 25 digital information, 14, 19, 20, 21, 24, 46 digital printing system, 46, 47 diode, 10, 18, 36 DNA, 61, 76-77 gene therapy, 76 structure, 77 transcription, 76 disability, number of persons with, 63 dog, robotic pet, 78 DSL high-speed Internet connection, 41 **DVD,** 7, 14-15, 21 Blu-Ray, 15 evolution, 15 HD. 15 operation, 14-15 storage capacity, 14 Eastman Kodak, 20 electric current, 22-23 brown dwarf, 86 closest, 86 first photographed, 86 gaseous, 86 gravitational force, 87 hottest, 86 indirect detection, 87 most distant, 86 most like Earth, 87 most massive, 86 oldest, 87 planetary systems, 87 redshift, 87 rocky, 87 similarity to Earth, 87 smallest, 86 stars, 87 eyeglasses, 3D effect, 13 first discovered, 86 electric light, 48 electromagnetic calorimeter, 91 electromagnetic radiation, 11 electromagnetic spectrum, 22-23 electron microscope, 88 electronic mail, 40 Electronic Numerical Integrator and Computer (ENIAC), first computer, 28-29 elementary particle, 90 **ELIZA** (computer program), robots, 78 Empire State Building (United States), 31 ephemerides (satellite), 35 Eros (asteroid), 85 ERS-1 Satellite, 22 European Organization for Nuclear Research (CERN), 90 extrasolar planet, 86-87 blueshift, 87 fabric, 74 fax. 6 **fiber-optic cable.** Internet, 41 film: See cinematography; IMAX technology flat screen projection theater, 13 flexography (printing), 47 fluorodeoxyglucose (FDG), 56 follicular aspiration, 60 microwave ovens, 22, 23 soldiers of the future, 83 foot, bionic implants, 63 4D ultrasound, 58-59 Freddy (robot), 78 frequency, 22 **Furby,** robotic pets, 79 Future Force Warrior program, 83 98 INDEX ## G Gabor, Dennis, 51 game, Wii video game console, 16-17 GameCube, 16 gamma-ray photon, 57 Garcia, Nicole, 42 genetic defect, correcting, 77 genome, 76 Gliese 581 c (planet), 86, 87 compared to Earth, 87 glucose, 56 GPS (Global Positioning System), 28, 34-35 gravitational force, 87 gravitational microlensing, 86 guanine, 76, 77 Gutenberg, Johannes, 47 hadrionic calorimeter, 91 Hadron Collider: See Large Hadron Collider Halley's Comet, 85 **HD DVD,** 15 head-mounted display (HMD), 81 health: See medicine heart, artificial, 66-67 Heilig, Morton, 81 heliopause, 85 high-definition television, 11 Holographic Versatile Disc (HVD), 50 holography, 50-51 home movie, 14, 20 house, smart houses, 70-71 human cell, components, 76 human genome, 77 humanoid, robots, 79 hydrogen (atom), magnetic resonance imaging, 55 hypertext markup language (HTML), 40 hypertext transfer protocol (HTTP), 40 ### I IMAX technology, 80 film, 12, 13 filming, 12 invention, 42 projection system, 12, 42 screen, 12, 13, 42, 80 sound, 12, 42 theater, 12, 13, 42 35-mm movies compared, 13 3D effects, 12-13, 42 in vitro fertilization, 60-61 number of babies resulting from, 60 success rate, 61 inactive circuit, 36 information storage, from CD to Blu-ray, 15 information technology, impact, 38 integrated circuit, 37 intelligence, nature of, 29 Intelligence, nature of, 29 International Space Station, 84 Internet, 5, 21, 28, 40-41 browser, 40 chat, 40 connection types, 41 electronic mail, 40 router, 41 search engine, 40 service provider (ISP), 40, 41 smart houses, 70 social impact, 40 transmitting information via, 40-41 voice over IP, 40 Web site/Web page, 40 Internet service provider (ISP), 40,41 Intracytoplasmic Sperm Injection (ICSI), 60 invention cellular telephone, 23, 28, 32-33 cinematography, 12, 28, 42-43 computer, 6, 29, 38-39 computer chip, 29, 36-37 Global Positioning System (GPS), 28, 34-35 history and purpose, 5 holography, 50-51 human capacity for inventiveness, 4-5 Internet, 5, 21, 28, 40-41 laser, 48-49 overview, 28-29 printing press, 5, 29, 40, 46-47 recent breakthroughs, 28-51 skyscraper, 30-31 television, 6, 44-45 iPhone, 33 iPod, 8-9 ISP (Internet service provider), 40, 41 iTunes, 8, 33 ## J-K Jin Mao Tower (China), 31 JPG file, 19 Jupiter, missions to, 85 Kasparov, Garry, 78, 79 keyboard, computers, 38 Kilby, Jack, 37 Kismet (robot), 79 Kodak camera, 19 Land Warrior project, 82 laptop computer, 38 Large Hadron Collider (LHC), 90-91 Atlas detector, 90 CMS detector, 91 collision record, 91 electromagnetic calorimeter, 91 Hadrionic calorimeter, 91 linear particle accelerator, 90 muon detector, 91 silicon tracker, 91 superconducting magnets, 91 tunnels, 90 laser, 48-49 beam formation, 48-49 DVDs. 14 electric light compared, 48 energy level, 49 holography, 50 inventor, 48 light generation, 49 ruby, 48 stars, 49 theoretical principles, 49 laser eye surgery, 52-53 LCD (liquid crystal display), 6, 9, 10-11 application, 10 image formation, 11 inside the screen, 10 light intensity, 11 light path, 11 size. 11 video, 20 letterpress printing, 47 expectancy, 5, 52 extrasolar, existence of, 86 liaht composition, 49 lasers, 48 Light Amplification by Stimulated Emission of Radiation: See laser linear particle accelerator, 90 linotype, 47 liquid crystal, 10, 11 Liquid Crystal Display: See LCD lithography, 47 ## M locomotive, invention, 5 Lumière brothers, 19, 43 magic lantern, 43 magnetic resonance imaging (MRI), 53, 54-55 Maiman, Theodore, 48 map. GPS. 34-35 Mars, missions to, 84, 85 Matrix (movie trilogy), 80, 81 Maxwell, James Clerk, 19 McCarthy, John, 78 McLuhan, Marshall, 46 medicine artificial heart, 66-67 bionic implant, 62-63 biotechnology, 76, 77 in vitro fertilization, 60-61 laser eye surgery, 52-53 magnetic resonance imaging, 53, 54-55 nanotechnology, 73 overview, 52-53 positron emission tomography, 56-57 robotic surgery, 64-65 technological advances, 52-67 ultrasound imaging, 58-59 Mercury, missions to, 84 messenger RNA, 76 metabolism, 56 microscope, types, 88 microwave, 22-23 communications, 23 oven, 22, 23 military GPS, 34 soldiers of the future, 82-83 virtual reality, 81 miniPod, 8 moai, Easter Island, 5 modem (Modulator-Demodulator), 41 molecular computer, 38 monitor, computers, 38 Moon (Earth's), manned missions, 84 morula, 61 motherboard, computers, 39 mouse, computers, 38 movable type, invention, 47 technology Mule (vehicle), 83 muon detector, 91 movie: See cinematography; IMAX H. ## N nanotechnology, 69, 72-73 applications, 72-73, 74, 82, 83 defined, 72 nanometer defined, 72 nanorobots, 4-5, 72 nanotubes, 72, 73 Navstar GPS satellite, 35 Neptune, missions to, 84, 85 neuronal socket, 80 Niépce, Nicéphore, 18 Nintendo Wii, 16-17 Nipkow, Paul, 44 nucleotide, 76 Nunchuck, 17 offset printing, 47 Omnimax, 42 operating system, 38 optical disc, reading, 14 optical microscope, 88 orbit (atom), energy level, 48 Paik, Nam June, 20 PaPeRo (robot), 79 parallel port, 39 Parkinson disease, 57 personal computer, 38 pet robot AIBO, 78 Furby, 79 Petronas Towers (Malaysia), 31 photography, 7 100 INDEX | basic principle, 18 | D | Simnet, 81 | Super 8 film, 20 | See also IMAX technology | VCR system, first, 20 |
---|---|---|--|--|--| | cell phone, 33 | K | skyscraper, 30-31 | superconducting magnet, 54 | 3D sound simulation, 80, 81 | VHS, 20, 21 | | color, 19 | | smart clothing, 69, 74-75 | surgery, robotic, 64-65 | thymine, 76, 77 | webcam, 21, 40 | | digital camera, 18-19 | radar, invention, 44 | athletic shoe, 26-27, 75 | Sutherland, Ivan, 81 | TIFF file, 19 | See also DVD | | history and evolution, 18-19 | radiation, 49 | fabric, 74 | | Titan (Saturn moon), 84, 85 | video game, Wii console, 16-17 | | silver nitrate, 18 | radio, 28 | military uniform, 82, 83 | | tool, human inventiveness, 5 | Video 2000, 21 | | video, 19 | radiography, 54 | minisensors, 74 | | track shoe, 27 | videoconferencing, 33 | | See also cinematography | redshift, 87 | nanotechnology, 73 | | transgenic organism, 76 | virtual reality, 80-81 | | photon, 48, 49, 57 | refrigerator, 5 | uses, 74 | 1 | transistor | applications, 80 | | pituitary gland, 60 | resistor, 36 | smart house, 70-71 | | thin-film, 11 | boots, 81 | | pixel, 11, 19, 20, 25, 38 | retrovirus, 77 | central system, 71 | Taipei Tower (Taiwan), 31 | traditional, 36 | controllers, 81 | | planet | ribosome, 76 | comfort and economy, 70 | Talbot, William, 18 | transmission electron microscope, 88 | data glove, 80, 81 | | extrasolar planets, 86-87 | RNA, 76 | primary functions, 70 | TCP/IP protocol, Internet, 41 | tunneling current, 88, 89 | deceiving the senses, 80 | | solar system, 84-85 | robot, 68-69, 78-79 | remote connection, 71 | technology | tunneling effect (physics), 88, 89 | entertainment, 80 | | plant, transgenic, 76 | robotic surgery, 53, 64-65 | security, 70 | breakthrough inventions, 28-51 | tunneling microscope, 88-89 | helmet, 80, 81 | | polarizer, 11 | robotics, 5, 72 | soldier, 82-83 | cutting-edge, 68-91 | Turing test, 78 | history and evolution, 81 | | positron, 57 | Rohrer, Heinrich, 88 | Future Force Warrior program, 83 | daily-life applications, 6-27 | 3 , | images, 80 | | positron emission tomography (PET), 56-57 | rotogravure printing, 47 | helmet, 83 | emergence, 5 | | Matrix trilogy, 81 | | image comparison of normal vs. Alzheimer's | router, Internet, 41 | Land Warrior project, 82 | evolution, 6-7 | | Nintendo Wii, 16-17 | | disease, 57 | ruby laser, 48 | uniform, 82, 83 | milestones, 5 | T T T 7 | robotic surgery, 64 | | minimum resolution, 57 | ruby laser, 40 | unmanned vehicles, 82-83 | science and health, 52-67 | U-V | training simulators, 80, 81 | | tracer, following, 56 | | weaponry, 83 | telephone, cellular: See cellular telephone | | VITA-2 (automatic control car), 78 | | uses, 56, 57 | | space exploration, 84-85 | television, 6, 44-45 | UAV (aircraft), 83 | voice over IP, 40 | | | | | | | - | | praxinoscope, 42 | | Aldebaran, 85 | airwaves, 44 | ultrasound imaging, 58-59 | VRML programming language, 80 | | praxinoscope, 42
pregnancy, in vitro fertilization, 60, 61 | S | Aldebaran, 85
beyond the solar system, 85 | airwaves, 44
American vs. European, 45 | ultrasound imaging, 58-59
Unimation, 78 | VRML programming language, 80 | | pregnancy, in vitro fertilization, 60, 61 | S | Aldebaran, 85
beyond the solar system, 85
distance from Sun, 84-85 | airwaves, 44
American vs. European, 45
cable, 21, 44 | ultrasound imaging, 58-59 Unimation, 78 unmanned vehicle | VRML programming language, 80 | | pregnancy, in vitro fertilization, 60, 61
printed circuit board, 37 | Satellite artificial 33 35 40 44 84 | beyond the solar system, 85
distance from Sun, 84-85 | American vs. European, 45 cable, 21, 44 | Unimation, 78
unmanned vehicle | VRML programming language, 80 | | pregnancy, in vitro fertilization, 60, 61
printed circuit board, 37
printing press, 5, 29, 40, 46-47 | satellite, artificial, 33, 35, 40, 44, 84 | beyond the solar system, 85 | American vs. European, 45 cable, 21, 44 digital technology, 44 | Unimation, 78
unmanned vehicle
Cougar, 82 | | | pregnancy, in vitro fertilization, 60, 61
printed circuit board, 37
printing press, 5, 29, 40, 46-47
authorship, notion of, 46 | Saturn, missions to, 85 | beyond the solar system, 85
distance from Sun, 84-85
extrasolar planets, 86-87
extraterrestrial civilization, 85 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 | Unimation, 78
unmanned vehicle
Cougar, 82
maximum flight time, 82 | VRML programming language, 80 | | pregnancy, in vitro fertilization, 60, 61
printed circuit board, 37
printing press, 5, 29, 40, 46-47
authorship, notion of, 46
digital systems, 46, 47 | Saturn, missions to, 85 scanner, 6, 24-25 | beyond the solar system, 85
distance from Sun, 84-85
extrasolar planets, 86-87
extraterrestrial civilization, 85
flyby missions, 84 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 | | | pregnancy, in vitro fertilization, 60, 61
printed circuit board, 37
printing press, 5, 29, 40, 46-47
authorship, notion of, 46
digital systems, 46, 47
non-digital systems, 46 | Saturn, missions to, 85
scanner, 6, 24-25
bar-code, 24 | beyond the solar system, 85
distance from Sun, 84-85
extrasolar planets, 86-87
extraterrestrial civilization, 85
flyby missions, 84
heliopause crossing, 85 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 | W-Z | | pregnancy, in vitro fertilization, 60, 61
printed circuit board, 37
printing press, 5, 29, 40, 46-47
authorship, notion of, 46
digital systems, 46, 47
non-digital systems, 46
social and cultural impact, 40, 46 | Saturn, missions to, 85
scanner, 6, 24-25
bar-code, 24
digital fingerprint, 25 | beyond the solar system, 85
distance from Sun, 84-85
extrasolar planets, 86-87
extraterrestrial civilization, 85
flyby missions, 84
heliopause crossing, 85
International Space Station, 84 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 | W-Z waypoint, GPS, 34 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 | Saturn, missions to, 85
scanner, 6, 24-25
bar-code, 24
digital fingerprint, 25
magnetic resonance imaging, 54 | beyond the solar system, 85
distance from Sun, 84-85
extrasolar planets, 86-87
extraterrestrial civilization, 85
flyby missions, 84
heliopause crossing, 85
International Space Station, 84
Solar System, 84, 85 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 | waypoint, GPS, 34 Web browser, 40 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 | Saturn, missions to, 85
scanner, 6, 24-25
bar-code, 24
digital fingerprint, 25
magnetic resonance imaging, 54
operation, 24-25 | beyond the solar system,
85
distance from Sun, 84-85
extrasolar planets, 86-87
extraterrestrial civilization, 85
flyby missions, 84
heliopause crossing, 85
International Space Station, 84
Solar System, 84, 85
space probes, 84, 85 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 | Saturn, missions to, 85
scanner, 6, 24-25
bar-code, 24
digital fingerprint, 25
magnetic resonance imaging, 54
operation, 24-25
types, 24-25 | beyond the solar system, 85
distance from Sun, 84-85
extrasolar planets, 86-87
extraterrestrial civilization, 85
flyby missions, 84
heliopause crossing, 85
International Space Station, 84
Solar System, 84, 85
space probes, 84, 85
space shuttle, 84 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5 | Saturn, missions to, 85
scanner, 6, 24-25
bar-code, 24
digital fingerprint, 25
magnetic resonance imaging, 54
operation, 24-25
types, 24-25
uses, 24 | beyond the solar system, 85
distance from Sun, 84-85
extrasolar planets, 86-87
extraterrestrial civilization, 85
flyby missions, 84
heliopause crossing, 85
International Space Station, 84
Solar System, 84, 85
space probes, 84, 85
space shuttle, 84
unmanned spacecraft, 84 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5 Proprio Foot, bionic implants, 63 | Saturn, missions to, 85
scanner, 6, 24-25
bar-code, 24
digital fingerprint, 25
magnetic resonance imaging, 54
operation, 24-25
types, 24-25
uses, 24
scanning electron microscope, 88 | beyond the solar system, 85 distance from Sun, 84-85 extrasolar planets, 86-87 extraterrestrial civilization, 85 flyby missions, 84 heliopause crossing, 85 International Space Station, 84 Solar System, 84, 85 space probes, 84, 85 space shuttle, 84 unmanned spacecraft, 84 space probe, 84, 85 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 taping, 44 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 Venus, missions to, 84 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 Wii (video game console), 16-17 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5 Proprio Foot, bionic implants, 63 pseudo-random code, 35 | Saturn, missions to, 85 scanner, 6, 24-25 bar-code, 24 digital fingerprint, 25 magnetic resonance imaging, 54 operation, 24-25 types, 24-25 uses, 24 scanning electron microscope, 88 scanning tunneling microscope (STM), 88-89 | beyond the solar system, 85 distance from Sun, 84-85 extrasolar planets, 86-87 extraterrestrial civilization, 85 flyby missions, 84 heliopause crossing, 85 International Space Station, 84 Solar System, 84, 85 space probes, 84, 85 space shuttle, 84 unmanned spacecraft, 84 space probe, 84, 85 space shuttle, 84 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 taping, 44 3D, 44 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 Venus, missions to, 84 VHS, 20, 21 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 Wii (video game console), 16-17 Wiimote, 16 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5 Proprio Foot, bionic implants, 63 pseudo-random code, 35 pyramid, construction, 5 | Saturn, missions to, 85 scanner, 6, 24-25 bar-code, 24 digital fingerprint, 25 magnetic resonance imaging, 54 operation, 24-25 types, 24-25 uses, 24 scanning electron microscope, 88 scanning tunneling microscope (STM), 88-89 Schulze, Frederick, 18 | beyond the solar system, 85 distance from Sun, 84-85 extrasolar planets, 86-87 extraterrestrial civilization, 85 flyby missions, 84 heliopause crossing, 85 International Space Station, 84 Solar System, 84, 85 space probes, 84, 85 space shuttle, 84 unmanned spacecraft, 84 space probe, 84, 85 space shuttle, 84 Spencer, Percy, 22 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 taping, 44 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 Venus, missions to, 84 VHS, 20, 21 video, 19, 20-21 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 Wii (video game console), 16-17 Wiimote, 16 Windows operating system, 38 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5 Proprio Foot, bionic implants, 63 pseudo-random code, 35 pyramid, construction, 5 QRIO (robot), 79 | Saturn, missions to, 85 scanner, 6, 24-25 bar-code, 24 digital fingerprint, 25 magnetic resonance imaging, 54 operation, 24-25 types, 24-25 uses, 24 scanning electron microscope, 88 scanning tunneling microscope (STM), 88-89 Schulze, Frederick, 18 search engine, 40 | beyond the solar system, 85 distance from Sun, 84-85 extrasolar planets, 86-87 extraterrestrial civilization, 85 flyby missions, 84 heliopause crossing, 85 International Space Station, 84 Solar System, 84, 85 space probes, 84, 85 space shuttle, 84 unmanned spacecraft, 84 space probe, 84, 85 space shuttle, 84 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 taping, 44 3D, 44 transmission, 44 video, switch to, 20 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 Venus, missions to, 84 VHS, 20, 21 video, 19, 20-21 Betamax, 20 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 Wii (video game console), 16-17 Wiimote, 16 Windows operating system, 38 Wireless Application Protocol (WAP), 33 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5 Proprio Foot, bionic implants, 63 pseudo-random code, 35 pyramid, construction, 5 QRIO (robot), 79 quantum computer, 38 | Saturn, missions to, 85 scanner, 6, 24-25 bar-code, 24 digital fingerprint, 25 magnetic resonance imaging, 54 operation, 24-25 types, 24-25 uses, 24 scanning electron microscope, 88 scanning tunneling microscope (STM), 88-89 Schulze, Frederick, 18
search engine, 40 Sears Tower (United States), 31 | beyond the solar system, 85 distance from Sun, 84-85 extrasolar planets, 86-87 extraterrestrial civilization, 85 flyby missions, 84 heliopause crossing, 85 International Space Station, 84 Solar System, 84, 85 space probes, 84, 85 space shuttle, 84 unmanned spacecraft, 84 space probe, 84, 85 space shuttle, 84 Spencer, Percy, 22 sports athletic shoes, 27 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 taping, 44 3D, 44 transmission, 44 video, switch to, 20 text-recognition software, 24 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 Venus, missions to, 84 VHS, 20, 21 video, 19, 20-21 Betamax, 20 evolution timeline, 20-21 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 Wii (video game console), 16-17 Wiimote, 16 Windows operating system, 38 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5 Proprio Foot, bionic implants, 63 pseudo-random code, 35 pyramid, construction, 5 QRIO (robot), 79 | Saturn, missions to, 85 scanner, 6, 24-25 bar-code, 24 digital fingerprint, 25 magnetic resonance imaging, 54 operation, 24-25 types, 24-25 uses, 24 scanning electron microscope, 88 scanning tunneling microscope (STM), 88-89 Schulze, Frederick, 18 search engine, 40 Sears Tower (United States), 31 Senefelder, Alois, 47 | beyond the solar system, 85 distance from Sun, 84-85 extrasolar planets, 86-87 extraterrestrial civilization, 85 flyby missions, 84 heliopause crossing, 85 International Space Station, 84 Solar System, 84, 85 space probes, 84, 85 space shuttle, 84 unmanned spacecraft, 84 space probe, 84, 85 space shuttle, 84 Spencer, Percy, 22 sports athletic shoes, 27 GPS, 34 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 taping, 44 3D, 44 transmission, 44 video, switch to, 20 text-recognition software, 24 thin-film transistor (TFT), 11 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 Venus, missions to, 84 VHS, 20, 21 video, 19, 20-21 Betamax, 20 evolution timeline, 20-21 formats, 21 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 Wii (video game console), 16-17 Wiimote, 16 Windows operating system, 38 Wireless Application Protocol (WAP), 33 World Trade Center (United States), 31 World Wide Web, 40, 41 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5 Proprio Foot, bionic implants, 63 pseudo-random code, 35 pyramid, construction, 5 QRIO (robot), 79 quantum computer, 38 | Saturn, missions to, 85 scanner, 6, 24-25 bar-code, 24 digital fingerprint, 25 magnetic resonance imaging, 54 operation, 24-25 types, 24-25 uses, 24 scanning electron microscope, 88 scanning tunneling microscope (STM), 88-89 Schulze, Frederick, 18 search engine, 40 Sears Tower (United States), 31 Senefelder, Alois, 47 Sensorama, 81 | beyond the solar system, 85 distance from Sun, 84-85 extrasolar planets, 86-87 extraterrestrial civilization, 85 flyby missions, 84 heliopause crossing, 85 International Space Station, 84 Solar System, 84, 85 space probes, 84, 85 space shuttle, 84 unmanned spacecraft, 84 space probe, 84, 85 space shuttle, 84 Spencer, Percy, 22 sports athletic shoes, 27 GPS, 34 star, extrasolar planets, 87 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 taping, 44 3D, 44 transmission, 44 video, switch to, 20 text-recognition software, 24 thin-film transistor (TFT), 11 3D image | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 Venus, missions to, 84 VHS, 20, 21 video, 19, 20-21 Betamax, 20 evolution timeline, 20-21 formats, 21 image recorder, 20 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 Wii (video game console), 16-17 Wiimote, 16 Windows operating system, 38 Wireless Application Protocol (WAP), 33 World Trade Center (United States), 31 World Wide Web, 40, 41 X-ray, 54 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5 Proprio Foot, bionic implants, 63 pseudo-random code, 35 pyramid, construction, 5 QRIO (robot), 79 quantum computer, 38 | Saturn, missions to, 85 scanner, 6, 24-25 bar-code, 24 digital fingerprint, 25 magnetic resonance imaging, 54 operation, 24-25 types, 24-25 uses, 24 scanning electron microscope, 88 scanning tunneling microscope (STM), 88-89 Schulze, Frederick, 18 search engine, 40 Sears Tower (United States), 31 Senefelder, Alois, 47 Sensorama, 81 serigraphy (printing), 47 | beyond the solar system, 85 distance from Sun, 84-85 extrasolar planets, 86-87 extraterrestrial civilization, 85 flyby missions, 84 heliopause crossing, 85 International Space Station, 84 Solar System, 84, 85 space probes, 84, 85 space shuttle, 84 unmanned spacecraft, 84 space probe, 84, 85 space shuttle, 84 Spencer, Percy, 22 sports athletic shoes, 27 GPS, 34 star, extrasolar planets, 87 Starfire Observatory, 49 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 taping, 44 3D, 44 transmission, 44 video, switch to, 20 text-recognition software, 24 thin-film transistor (TFT), 11 3D image holography, 51 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 Venus, missions to, 84 VHS, 20, 21 video, 19, 20-21 Betamax, 20 evolution timeline, 20-21 formats, 21 image recorder, 20 reproduction and editing, 21 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 Wii (video game console), 16-17 Wiimote, 16 Windows operating system, 38 Wireless Application Protocol (WAP), 33 World Trade Center (United States), 31 World Wide Web, 40, 41 X-ray, 54 X3D programming language, 80 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5 Proprio Foot, bionic implants, 63 pseudo-random code, 35 pyramid, construction, 5 QRIO (robot), 79 quantum computer, 38 | Saturn, missions to, 85 scanner, 6, 24-25 bar-code, 24 digital fingerprint, 25 magnetic resonance imaging, 54 operation, 24-25 types, 24-25 uses, 24 scanning electron microscope, 88 scanning tunneling microscope (STM), 88-89 Schulze, Frederick, 18 search engine, 40 Sears Tower (United States), 31 Senefelder, Alois, 47 Sensorama, 81 serigraphy (printing), 47 shoe, athletic: See athletic shoe | beyond the solar system, 85 distance from Sun, 84-85 extrasolar planets, 86-87 extraterrestrial civilization, 85 flyby missions, 84 heliopause crossing, 85 International Space Station, 84 Solar System, 84, 85 space probes, 84, 85 space shuttle, 84 unmanned spacecraft, 84 space probe, 84, 85 space shuttle, 84 Spencer, Percy, 22 sports athletic shoes, 27 GPS, 34 star, extrasolar planets, 87 Starfire Observatory, 49 steam engine, invention, 5 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 taping, 44 3D, 44 transmission, 44 video, switch to, 20 text-recognition software, 24 thin-film transistor (TFT), 11 3D image | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 Venus, missions to, 84 VHS, 20, 21 video, 19, 20-21 Betamax, 20 evolution timeline, 20-21 formats, 21 image recorder, 20 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 Wii (video game console), 16-17 Wiimote, 16 Windows operating system, 38 Wireless Application Protocol (WAP), 33 World Trade Center (United States), 31 World Wide Web, 40, 41 X-ray, 54 | | pregnancy, in vitro fertilization, 60, 61 printed circuit board, 37 printing press, 5, 29, 40, 46-47 authorship, notion of, 46 digital systems, 46, 47 non-digital systems, 46 social and cultural impact, 40, 46 technological advances timeline, 47 types of systems, 47 probability cloud, 89 production, systematizing, 5
Proprio Foot, bionic implants, 63 pseudo-random code, 35 pyramid, construction, 5 QRIO (robot), 79 quantum computer, 38 | Saturn, missions to, 85 scanner, 6, 24-25 bar-code, 24 digital fingerprint, 25 magnetic resonance imaging, 54 operation, 24-25 types, 24-25 uses, 24 scanning electron microscope, 88 scanning tunneling microscope (STM), 88-89 Schulze, Frederick, 18 search engine, 40 Sears Tower (United States), 31 Senefelder, Alois, 47 Sensorama, 81 serigraphy (printing), 47 | beyond the solar system, 85 distance from Sun, 84-85 extrasolar planets, 86-87 extraterrestrial civilization, 85 flyby missions, 84 heliopause crossing, 85 International Space Station, 84 Solar System, 84, 85 space probes, 84, 85 space shuttle, 84 unmanned spacecraft, 84 space probe, 84, 85 space shuttle, 84 Spencer, Percy, 22 sports athletic shoes, 27 GPS, 34 star, extrasolar planets, 87 Starfire Observatory, 49 | American vs. European, 45 cable, 21, 44 digital technology, 44 high-definition, 11 interlaced scan, 45 LCD, 10, 11 live, 7, 20 origin, 44 radar, invention of, 44 reception, 45 satellite, 44 taping, 44 3D, 44 transmission, 44 video, switch to, 20 text-recognition software, 24 thin-film transistor (TFT), 11 3D image holography, 51 3D movie, 12-13, 42 | Unimation, 78 unmanned vehicle Cougar, 82 maximum flight time, 82 Mule, 83 UAV, 83 uracil, 76 Uranus, missions to, 84, 85 USB port, 39 VaMP (automatic control car), 78 VCR, invention, 20 Venus, missions to, 84 VHS, 20, 21 video, 19, 20-21 Betamax, 20 evolution timeline, 20-21 formats, 21 image recorder, 20 reproduction and editing, 21 storage, 21 | waypoint, GPS, 34 Web browser, 40 Web site (Web page), 40 webcam, 21, 40 Wi-Fi wireless connection, 16, 33, 41 Wii (video game console), 16-17 Wiimote, 16 Windows operating system, 38 Wireless Application Protocol (WAP), 33 World Trade Center (United States), 31 World Wide Web, 40, 41 X-ray, 54 X3D programming language, 80 | TECHNOLOGY Britannica