UNIVERSE

About the pagination of this eBook

Due to the unique page numbering scheme of this book, the electronic pagination of the eBook does not match the pagination of the printed version. To navigate the text, please use the electronic Table of Contents that appears alongside the eBook or the Search function.

For citation purposes, use the page numbers that appear in the text.

UNIVERSE

Britannica Illustrated Science Lilbrary

Encyclopædia Britannica, Inc.
Chicago ■ London ■ New Delhi ■ Paris ■ Seoul ■ Sydney ■ Taipei ■ Tokyo

Britannica Illustrated Science Library

(c) 2008 Editorial Sol 90

All rights reserved.
Idea and Concept of This Work: Editorial Sol 90
Project Management: Fabián Cassan
Photo Credits: Corbis, ESA, Getty Images, Graphic News, NASA, National Geographic, Science Photo Library

Illustrators: Guido Arroyo, Pablo Aschei, Gustavo J. Caironi, Hernán Cañellas, Leonardo César, José Luis Corsetti, Vanina Farías, Joana Garrido, Celina Hilbert, Isidro López, Diego Martín, Jorge Martínez, Marco Menco, Ala de Mosca, Diego Mourelos, Eduardo Pérez, Javier Pérez, Ariel Piroyansky, Ariel Roldán, Marcel Socías, Néstor Taylor, Trebol Animation, Juan Venegas, Coralia Vignau, 3DN, 3DOM studio

Composition and Pre-press Services: Editorial Sol 90
Translation Services and Index: Publication Services, Inc.

Portions © 2008 Encyclopædia Britannica, Inc.

Encyclopædia Britannica, Britannica, and the thistle logo are registered trademarks of Encyclopædia Britannica, Inc.

Britannica Illustrated Science Library Staff

Editorial

Michael Levy, Executive Editor, Core Editorial John Rafferty, Associate Editor, Earth Sciences
William L. Hosch, Associate Editor, Mathematics and Computers
Kara Rogers, Associate Editor, Life Sciences
Rob Curley, Senior Editor, Science and Technology
David Hayes, Special Projects Editor

Art and Composition

Steven N. Kapusta, Director
Carol A. Gaines, Composition Supervisor
Christine McCabe, Senior Illustrator

Media Acquisition

Kathy Nakamura, Manager

Copy Department

Sylvia Wallace, Director
Julian Ronning, Supervisor

Information Management and Retrieval

Sheila Vasich, Information Architect

Production Control

Marilyn L. Barton

Manufacturing

Kim Gerber, Director

Encyclopædia Britannica, Inc.

Jacob E. Safra, Chairman of the Board
Jorge Aguilar-Cauz, President
Michael Ross, Senior Vice President, Corporate Development
Dale H. Hoiberg, Senior Vice President and Editor
Marsha Mackenzie, Director of Production

International Standard Book Number (set): 978-1-59339-797-5
International Standard Book Number (volume): 978-1-59339-798-2
Britannica Illustrated Science Library: Universe 2008
Printed in China

excrecomemp
Universe

Contents

The Earth and the Moon Page 66

Observing the Universe

Page 80

What Is the Universe?

he universe is everything that exists, from the smallest particles to the largest ones, together with all matter and energy. The universe includes
visible and invisible things, such as dark matter, the great, secret component of the cosmos. The search for dark matter is currently one of the most important tasks of cosmology. Dark matter may
literally determine the density of all of space, as well as decide the destiny of the universe. Did you know that, second by second, the universe grows and grows? The question that astronomers
are asking-the question that concerns them the most-is how much longer the universe can continue to expand like a balloon before turning into something cold and dark. \bullet

X-Ray of the Cosmos

- he universe, marvelous in its majesty, is an ensemble of a hundred billion galaxies. Each of these galaxies (which tend to be found in large groups) has billions of stars. These galactic concentrations surround empty spaces, called cosmic voids. The immensity of the cosmos can be better grasped by realizing that the size of our fragile planet Earth, or even that of the Milky Way, is insignificant compared to the size of the remainder of the cosmos.

The Instant of Creation

t is impossible to know precisely how, out of nothing, the universe began to exist. According to the big bang theory-the theory most widely accepted in the scientific community-in the beginning, there appeared an infinitely small and dense burning ball that gave rise to space, matter, and energy. This happened 13.7 billion years ago. The great, unanswered question is what caused a small dot of light-filled with concentrated energy from which matter and antimatter were created-to arise from nothingness. In very little time, the young universe began to expand and cool. Several billion years later; it acquired the form we know today.

> ELEMENTARY PARTICLES
> In itis beginnings the universe was a soup of particles that interacted with each other
> because of high hevels of radiation Luter as the enviverse expanded, quarks formed the
> nuclei of the elements and then joined with elcectrons to form atoms.

$10^{-48} \mathrm{sec}$
$10^{320} \mathbf{F}($ and C$)$
At the closest moment to
At the closest moment to
zero time, which
been aple to to
beach shas has
temperature is is extremely temperature is extremely,
high. Before the universe's inflation;
a superfoce asuperforce governed everything.
—

$\underset{\substack{\text { Election } \\ \text { Negatively chargec }}}{\text { and }}$

The Transparent Universe

Everything Comes to an End

- he big bang theory helped solve the enigma of the early moments of the universe. What has yet to be resolved is the mystery surrounding the future that awaits. To unravel this mystery, the total mass of the universe must be known; but that figure has not yet been reliably determined. The most recent observations have removed some of this uncertainty: It seems that the mass of the universe is far too little to stop its expansion. If this is this case; the universe's present growth is merely the last step before its total death in complete darkness. $Q_{:}$
.

Flat Universe

1 There is a citical amount of mass. (1) for which the en anvivisent of mand
 etemane expansion would be the existence of
an ever-incresing number of galaxies and
stars if the wivertse stars. If the universe were flat, we could
taik about a cosmos born from ane rpposion
 outward forever. It is ifificult to think,
about a universe with these characteristics.

THE HAWKING UNIVEZRSE The universe was composed originally of four
spatial dimensions without the dimension of spatial dimensions without othe dimentilion of of
time Since ther is noc change without time,
one of these dimensions according to Hawking one of these dimensions, according to thewke,
transformed spontancously on a small scale transtormed spontaneousy on a small scal
into a temporara dimension, and the univers
began to began to expand.

Closed Universe

 If the universe had more than critical mass, it would expand ravity stopped reahe expanision. There, Che universe would contract in the Big an infinitely small, densese, and hot spot
similar to the one from which the universe was formed. Gravity's pull on the universe's excess matter would stop e expansion and reverse the process.

HOW IT IS MADE UP Dark energy is hypothesized to be the predominant energy in the the expansion of the universe.

Self-generated Universes

A less widely accepted theory about the nature of the universe suggests
that universes generate themselves. If this is the case, universes would be be treé, and they might be linked by
supermassive black holes:

Open Universe
(4) The most accepted theory about ass smaller than the critical value. The mass smalies than the critical value. The
latest measurements seem to indicate that the present time is just a phase before the
death of the universe, in which it goes cmpletely dark.

Bahy Universes
(5. According to this theory, universes continuouslsy sprout orther universesses. But
in this case, one universe would be inted from the death or disapppearance of another. Each dead universe in a final collapse, or

Big Crunch, would give rise to a supermassive black hole, from which another universe w
be born. This process could repeat itself be born. This process coulid repeat itseif
indefinitely making the number of univers
imposssible to determine.

The Forces of the Universe

- he four fundamental forces of nature are those that are not derived from basic forces. Physicists believe that, at one time; all physicall forces functioned as a single force and that duking the expansion of the universe, they became distinct from each other. Each force now governs different processes, and each interaction affects different types of particles. Gravity, electromagnetism, strong nuclear interactions, and weak nuclear. interactions are essential to our understanding of the behavior of the many objects that exist in the universe. In recent years, many scientists have tried with little success. to show how all forces are manifestations of a single type of exchange.

General Theory of Relativity

D. The biggest contrifution to our conprerenension of the univeverses interma Workings was made by Alsert Einstein 19.15 . Briciding on Newton's.
 hypothesized that tit was a consequence of what he called the curvature of spa

$\mathrm{E}=\mathrm{mc}^{2}$
In Einstein's equation, energyy and mass are itercsiangeable, fin an object increases its.
mass, its energy increases, and vice versa.

BENDING LIGHT
Light also bends because of the carvature of space-time.
When sen from a telescope, the real position of an object When sed trom a telescope, ten real postion of an oiject
is distorted. What is perceived through the telescope is a false location, generated by the curvature of the light.
is not possible to see the actual position of the objict.

\section*{
 Strong Nuclear Force
 (3) The strong nuclear force hodds the protoin and neutrons of atomic nuclei together. Both protons and neutrons are

sulject to this force. Gluons are particles that cary the strong nuclear force, and they bind quarks too ether to form
protonns and neutrons. Atomic nuclei are held topether by protons and neutrons. Atomic nucclei are held together by
residual forces in the interaction between cuarks and oluons
 NEWTON'S EQUATIO
 on the other The greater the distance eetween the
objects, the smaller the force they exert on each other.

Weak Nuclear orce (4) $\begin{aligned} & \text { The weak nutlear force is not as strong as the other } \\ & \text { forces. The weak kuclear interaction influences the bet? } \\ & \text { decay of aner }\end{aligned}$
 neutrino that later transtorns into an electron. This torce takes
part in the natural radioactive phenomena associated with certain
types of atoms.

Helium
Thenem
into

What Is in the Universe?

he universe is populated on a grand scale by strands of superclusters surrounding vacant areas. Sometimes the galaxies collide with each
other, triggering the formation of stars. In the vast cosmos, there are also quasars, pulsars, and black holes. Thanks to current technology, we can enjoy the displays of light and shadow
that make up, for example, the Eta Carinae Nebula (shown), which is composed of jets of hot, fluorescent gases. Although not all the objects in the universe are known, it can be said
without a doubt that most of the atoms that make up our bodies have been born in the interior of stars. \bullet

Luminous

- or a long time stars were a mystery to humans, and it was only as recently as the 19th century that astronomers began to understand the true nature of stars. Today we know that they are gigantic spheres of incandescent gas-mostly hydrogen, with a smaller proportion of helium. As a star radiates light, astronomers can precisely measure its brightness, color, and temperature. Because of their enormous distance from the Earth, stars beyond the Sun only appear as points of light, and even the most powerful telescopes do not reveal any surface features.

Hertzsprung-Russell (H-R) Diagram

Light-years and Parsecs

> In measuring the great distances $\begin{aligned} & \text { year is a unit of distance, not time. } A \text { parsec } \\ & \text { between stars, both light-years }(1 y) \\ & \text { is equivalent to the e istance between the } \\ & \text { star and the }\end{aligned}$ between stars, both light-years (ly) $\begin{aligned} & \text { the distancesc that light travels in a year- } \\ & 5.9 \text { trillion miles (10) trillion km). A light- }\end{aligned}$ star and the Earth if the parallax angle is of $\begin{aligned} & \text { one second arc. A pc is equal to } 3.26 \text { bight.- } \\ & \text { years, or } 19 \text { trillion miles }(311 \text { trillion kig). }\end{aligned}$

CoLors The hottest stars are bluish-white (spectral classes bluish-white (spectral classes $0, B$, and A. The coolest stars

 are orange, yellow, and red are orange, yellow, and red(spectral classes G, K, and M).

PRINCIPAL STARS WITHIN 100 LY FROM THE SUN

SUN
(G2) $\quad \begin{gathered}\text { ALPHA } \\ \text { cENTAURI }\end{gathered} \quad \begin{gathered}\text { SIRUS } \\ \text { (AO and }\end{gathered} \quad \begin{gathered}\text { PROCYON } \\ \text { (F5 and }\end{gathered}$

Measuring Distance

When the Eath orbitst the sun, the closeststars Lappear to nove in front of tabackround of more
 its pararalax. The enarallax. of the most distant stars are too small to measurue The closer a s star is is to the thearth, the small to measure, Th.
greater it parallax.

Spectral Analysis

The electromagnetic waves that make up light have

 Patterns of dark lines tyicially appear in the spectrum of
astar These pateens san be studied to to cterninine the a satr: 1 nese patterns san be stur
elenents that make up the star.
Calcium Hydrogen Hydrogen Sodium Hydrogen

Wavelength longest on the red side
DOPPLER EFFECT
When a star moves toward or away from an observer, its
wavelengths of light shift, aphenomenon called the Dopple effect.

Wavelength is comppressed by
the movement of the star.

- Star

Dark lines deviate toward the bue end of the spectrum
BLUESHIFT of a star moving toward the Earth

- $\begin{gathered}\text { Menikluinan } \\ (\text { A2 and A2) }\end{gathered}$

Stellar Evolution

S
tars are born in nebulae, which are giant clouds of gas (mainly hydrogen) and dust that float in space. Stars can have a life span of millions, or even billions, of years. The biggest stars have the shortest lives, because they consume their nuclear fuel (hydrogen) at a very accelerated rate. Other stars, like the Sun, burn fuel at a slower rate and may live some 10 billion years. Many times, a star's size indicates its age. Smaller stars are the youngest, and bigger stars are approaching youngest, and bigger stars are approac
their end, either through cooling or by their end, either through coo
exploding as a supernova.

Massive star More than 8 solar masses

Small star Less than 8 solar masses

Life Cycle of a Star

The evolution of a star depends on its mass. The
smallest ones, ilie the Sun, have relatively long and
 oodest lives. Such a star begins to burn helium when hydrogen is sepleted. In this way. its external layers
begin to swell luntil the star turns into a red giant. It begin to swel utid ine star turns into a red giant. It
ends its ife as white dwars, eventually fading away
completele ejecting remainino outerer lavers, and forming completely, ejecting remaining outer layers, and forming
a planetary nebula. A massive star, because of its higher density, can form elements heavier than helium from its
nuclear reactions. In the final stage of it life its core nuclear reactions. In the final astage of it it ife, its core
collapses and the star explodes. All that remains is a
 tarrs end by forming black holes.
$1 \begin{gathered}\text { Protostar } \\ \text { A protostar has a }\end{gathered}$ dense, gaseous
core surrounded by a cloud of dust.

Nebula

A CLOUD OF GAS AND DUST collapses
because of gravittional forces. In doing because of gravitational forces. In doin
so it heats ut and divids into smaller Each one of these clouds wil form a protostar.

rotostar

A protostar is formed by the separation of gas
and dust. Gravitational and dust. Gravitational
effects cause its core to rotate.

$$
\text { 2. } \begin{aligned}
& \text { STAR } \\
& \text { A star is finally born. It } \\
& \text { fises hydrogen to form } \\
& \text { helium and lies along } \\
& \text { the main secuence. }
\end{aligned}
$$

Red, Danger, and Death
$\int /$ hen a star exhausts its hydrogen, it begins to die. The helium that now makes up the star's core begins to undergo nuclear reactions, and the star remains bright. When the star's helium is depleted, fusion of carbon and oxygen begins, which causes the star's core to contract. The star continues to live, though its surface layers begin to expand and cool as the star turns into a red giant. Stars similar to the Sun (solar-type stars) follow this process. After billions of years, they end up as white dwarfs. When they are fully extinguished, they will be black dwarfs, invisible in space.

Red Giant

 All stars go through a red-giant mass, it may collapse or it may simp e enveloped in gaseous layers. The core of a red giant is 10 times smallerDIAMETER

SPECTACULAR DIMENSIONS On leaving the main sequence,
the star enlarges to 200 times the size of the sun. When the the size of the Sun. When the
star hegins to burn helium, its

Ize decreases to between 10 and
from a lack of hydrogen. A supergiant star (one with an initial mass greater than eight solar masses) lives a much shorter life. Because of the high density
attained by its core, it eventuall attained by its core, it eventually
collapses in on itself and explodes.
omes a white dwarf.
hertzsprung-russel When the star exhausts its
hydrogen, it leaves the main hydrogen, it leaves the main
sequence and burns helium as a red giant (or a
supergiant.) The smallest supergiant. The smalest
stars take billions of years to
leave the main sequences. leave the main seutuneacs.
The color of a red giont is The color of a red giant is
caused by is its relatively cool surface emperature of
$3,600^{\circ} \mathrm{F}\left(2,00^{\circ} \mathrm{C}\right)$.

4 TEMPERATURE TEMPERATURE
Asthe helium underoses fusion
the tenperature of the core

1%
maxatatity to the diameter of
a typical red giant.

White Dwarf

After going through the rec-giant stage, a solar-type star loses its outer layers, giving rise to a planetary nebula. In its center remains a white dwarf-a relatively small, very hot $\left(360,000^{\circ} \mathrm{F}\left[200,000^{\circ} \mathrm{Cl}\right]\right.$, dens
tarar. After cooling tor millions of years, it shuts down completely and tar. After cooling for millions of years, it shuts down completely and

RECTON OF THE CORE
\qquad
 the core even when the inner or
core has run out of hydrogen.
 2 Helium sproduced by the fusion

THE FUTURE OF THE SUN
Like any typieal star, the Sun burns hydrogen
during its main sequence. After takind

hertzsprunc-russell When a white dwarf leaves the When a white dwarf leaves the
reel-giant stage, it occupies the lower-eft conere of the $\mathrm{e}-\mathrm{R}$
liagram Its terperature may diagram. Its temperature may be
double that of a typical reed giant. A massive white divarf can collapse in on itself and en
life as a neutron star.

ED GIANT The radius of the
Sur reaches the
Earth's orbit.

Gas Shells

/ hen a small star dies, all that remains is an expanding gas shell known as a planetary nebula, which has nothing to do with the planets. In general, planetary nebulae are symmetrical or spherica objects. Although it has not been possible to
determine why they exist in such diversity, the reason may be related to the effects of the magnetic field of the dying central star. Viewed through a telescope several nebulae can be seen to contain a central dwarf star, a mere nebulae can be seen to contain a
remnant of its precursor star.

SPIROGRAPH

The Spirograph Nebula hot hiluminus core that
 hot LIuminuus core that excites nearby atoms,

 located 2.000 ligh from Earth.
 CHANDRASEKHAR
 Limit
 The astrophysicist Subrabhmanyan
 Chandrasaekhar, wimer of the Nonel Prize for Physics in
 Nobel. Prize for Physisc in 1983, , alculutated the mexim

 144 SOLAR MASSES
 1.44 SOLAR MASSES is the linit Chandraskhar obtained. In excesess of this

Supernovae

supernova is an extraordinary explosion of a giant star at the end of its life, accompanied by a sudden increase in brightness and the release of a great amount of energy. In 10 seconds, a supernova releases 100 times more energy than the sun will release in its entire life. After the explosion of the star that gives rise to a supernova, the gaseous remnant expands and shines for millions of years. It is estimated that, in our Milky Way galaxy, two supernovae occur per century.

The Twilight of a Star

 $\begin{array}{ll}\text { core has become incapable of } \\ \text { supporting its own gravity any longer. } & \begin{array}{l}\text { thousand s-of years. Mhe explosion } \\ \text { interstelliar spact new mateorial int } \\ \text { ind contributes }\end{array}\end{array}$ $\begin{array}{ll}\text { supporting its own gravity any longer. } & \begin{array}{l}\text { interstellar space and contributes } \\ \text { In the absence of fusion in its interior, } \\ \text { theayy atoms that can give rise to new } \\ \text { the star falls in upon itself, expelling }\end{array} \\ \text { generations of stars. }\end{array}$ Core

Other Elements

Explosion The star's ife ends in an inmense
expososio. Outing the weeks
for
 energy enitted ed by the the starer than the the
galaxy
g A suent


```
BEFORE AND AFTER
M,
TM,
```


la last stage in the evolution of a star's core is its transformation into a very dense, compact stellar body. Its particulars depend upon the amount of mass involved in its collapse. The largest stars become black holes, their density so great that their gravitational forces capture even light. The only way to detect these dead stars is by searching for the effects of their gravitation.

Discovery of Black Holes

 exerted by a black hole is so powerful, the gases
Shat passes cilose to it,
Sitetting nothing escape. of nearby stars are absorbed at great speed, spiraling toward the black hole and forming a spructure called an accretion disk. The friction
of the gases heats them of the gases heats them untit they shine
brightly. The hottest parts of the accretion disk may reach $100,000,000^{\circ} \mathrm{C}$ and are a source o phenomenono, black holose are fopaquu this
invisible to even the most advanced telescopes.
Sme astronomers bolieve that Solisibl to even the most adva)
some astronomers beiieve that
supermassive black holes midt supermassive black holes might have
a mass of a mass of millions, or even
billions, of solar masses.

Accretion Disk

 emitted. The gas that accumulates
rotates at very high speeds. When elgases from other staras
allide
lith the the disk, they lide with the disk, they

Bright gases

Neutron Star	1
When a star's initial mass is between	red giant
- 10 and 20 solar masses, its final mass	red giant lea
be larger than the mass of the S	
Despite losing great quantities of matter during nuclear reactions, the star finishes	times greater tha
with a very dense core. Because of its intense	2
star can end up as a pulsar. A pulsar is a	
pidly spinning neutron star that gives off	SUPERGIANT
beam of radio waves or other radiation. A	apidly
the beam sweeps around the object, the	vier ch
radiation is observed in very regular pulses.	位
Strong Gravitational	3
Attraction	
	${ }_{\text {Explosion }}^{\text {The }}$
gasesf from neieighororing star. Thi	collapeses. Pro
large spirat that swirls fatser and faster as it gets	and electr
it generates is so strong that it traps objectst that	and form neutrons.

(20)

are neutrons.

1 billion
 \pm $\pm=$ compact, dense core accompanam intense gravitational effects.

Pulsars

The first pulsar (a neutron star radiating
radio waves) was discovered in 1967 . Pulsars rotate anproximately 30 times per secon and have very intense magnetetic fields. Pulsarars mit radio waves from their two magnetic poles eighboring star, a hot spot that radiates X -rays is produced on the pulsar's surface.
structure of A pulsar
1 ThE SUN forms a shallow
$2{ }^{\text {A WWATTE }}$
\qquad \rightarrow

CURVED SPACE The theory of relativity suggests
that gravity is not a force but a distortion of space. This distortion creates a gravitataional well, the
depth of which depends on the mass of the object. Objects are
attracted to other objects through the curvature of space.

Devouring gas from a superoiant
Located within a binary system, the pulsar can
follow the same process as a black kole The
 smaler, neighthoringstars, heatingorpt the gas of st
surface and causing it to e enit X-rays surface and cuusing it to e mitit x-rays

Anatomy of Galaxies

alaxies are rotating groups of stars, gas, and dust. More than 200 years ago, philosopher Immanuel Kant postulated that nebulae were island-universes of distant stars. Even though astronomers now know that galaxies are held together by gravitational force, they have not been able to decipher what reasons might be behind galaxies' many shapes. The various ypes of galaxies range from ovals of old stars to spirals with arms of young stars and bright gases. The center of a galaxy has the greatest accumulation of stars. The Milky Way
Galaxy is now known to be so big that rays of light, which travel at Galaxy is now known to be so big that rays of light, which travel at
186,000 miles $(300,000 \mathrm{~km})$ per second, take 100,000 years to cross from one end to the other. 0

CLASSIFYING GALAXIES ACGORDING TO HUBBLE

SPIRAL
SPIRAL
In aspiral galay, a nucleles of
oid stars is surrounded by a fitat
and

SUBCLASSIFICATIONS

Calaxies are suludivided into

Prasenece of an ais and the lenth
of their arms (in the case of spiral

Galactic Clusters

Galaxies are objects that tend to form groups or clusters. Acting in response to gravitational force, they can form galaxies. These clusters have various shopes and are thought to
expand when thes join tocther. The Hercules cluster shown her expand wien trey join together. The Hercules cluster, shown here.
was discovered by Edmond Halley in 1714 and is located approximately 25,100 light-years from Earth. Each dot represents

Star Cities

- ine fifter talases somes 100 mitio year
 space. The two most important discoveries
concerning galaxies are attributed to the a astronomer Edwin Hublate. In 1926 h he e ointed out
that the spots, or patches, of light visible in the
night sky were actually distant galaxies. Hubble's
discovery put discovery put an end to the view held by astronomers
at the etime that the Milk Way ocostituted the
universe. In 1929, as a result of various odservations
of the spectrum of light radiated by the stars in the galaxies, Hubble noted that the light from the g
showed ra redslifit (Doppler effect). This effect indicated that the egalaxies were enoving away from
the Milly Way Galaxy. Hubble concluded that the
collision

 If stars emenating tal
 Ine into single, argee the fiture the miverse will consist of
few giant stars.

NEC 4676
 =

universe is expanding. But the expansion of the

 universe is expanading. But the expansion of theuniverse does not inply that galaxies are growing in
numbers. On the contrary, galaxies can collide and
merce. When two galaxies collide, they can distort each other in various ways. Over titey therer are fewer
and fewer galaxies. Sone galaxies extibit very peculiza

4

Active Galaxies

small number of galaxies differ from the rest by emitting high amounts of energy. The energy emission might be caused by the presence of black holes in its core that were formed through the gravitational collapse accompanying the death of supermassive stars. During their first billion years, the galaxies might have accumulated surrounding gaseous disks with their corresponding emissions of radiation. It is possible that the cores of the first galaxies are the quasars that are now observed at very great distances. -

Galaxy Formation

I A theory of galaxy formation holds asociated with active galaxies includining the Milky Way, were formed
from the uraual callinin of a ausaser
 gases consolididated in the thournumg tion of stars, the quasars), having no more
gases to o abosor, lost theiri energetic
fury and became inactive. According to this theory, there is a natural progression from quasars to active
galaxies to the common galaxies of galaxies to the common galaxies of
today. In 1994, astronomers studying today. II 1994, astronomers studyin
the center of the Milky Way
discovered a resion that discovered a region that may contai
a black hole and could be left over from early galactic activity. GASEOUS CLOUDS
Gaseus clouds sppeared from the
gravitational collapse of inmense masses gravitational collapse of immense masses
of gas during the early stages of the gas duringn the earys stages of the
universe. Later int the loust interior
stats beean to to form. stars began to form.
1 Astronomers believe that active galaxies are a direct legacy from the beginning of the universe. After the big bang, these galaxies would
have retained very energetic levels of radiation. have retained very energetic levels of radiation.
Quasars, the brightest and most ancient objects in the universs, make e up the core of this type of galaxy. In some cases, they emit X-rays or radio
waves. The existence of this high-energy activity waves. The existence of this high-energy activity
helps support the theory that galaxies could be
born from a supermassive black hole with a quasar that became inactive e ss stars formed and
it was left without gas to feed it of formation might be common to many galaxies. Today quasarars represent the ganaxies. Today पquasars represent
limint of what tit s opssible to see, even with speciaitized
telescopes.
smasaras are telescopes. Quasars are
small, dense, and bright.

 \title{
Stellar Metropolis
}
 \title{
Stellar Metropolis
}

- or a long time, our galaxy (called the Milky Way because of its resemblance to a stream of milk in the night sky) was a true enigma. It was Galileo Galilei who, in 1610, first pointed telescope at the Milky Way and saw that the weak whitish strip was composed of thousands and thousands of stars that appeared to almost touch each other. Little by little, astronomers began to realize that all these stars, like our own Sun, were part of the enormous ensemble-the galaxy that is our stellar metropolis. -

Structure of the Milky Way

The Milky Way, containing more than 100 billion stars, has two spiral arms and the center of the Milky Way, holds one of the most uminows stars in the galaxx
Eta Carinae The Perseus arm, the main outer arm of the Milky Way contains young Cat Carinae. The Perseus arm, the main outer arm of the Milky Way, contains young Ises the solar system within its inner border. The Orion arm of the Milky Way is a veritable star factory, where gaseo Way is a veritable star factory,
interstellar material can give bii
billins of stars Reen interstelar material can givern stars can als
within it.

ROTATION
The speeds of the rotation of the variousp parts of the
niiky Way vary according to those parts distances from

 greater because of the attraction that the obiects in this
region feel from the billions of stars within it.

The Solar System

A
mong the millions and millions of stars that form the Milky Way galaxy, there is a medium-sized one located in one of the galaxy's arms-the

Sun. To ancient peoples, the Sun was a god; to us, it is the central source of energy that generates heat, helping life exist. This star, together with the planets and other bodies that spin in orbits
around it, make up the solar system, which formed about 4.6 billion years ago The planets that rotate around it do not produce their own light. Instead, they reflect sunlight. After the Earth, Mars is
the most explored planet. Here we see a photo of Olympus Mons, the largest volcano in the entire solar system. It is almost two-and-a-half times as high as the tallest peak on the Earth, Mount Everest.

Attracted by a Star

lanets and their satellites, asteroids and other rocky objects, and an incalculable number of cometlike objects, some more than 1 trillion miles (1.6 trillion km) from the Sun, make up the solar system. In the 17th century, astronomer Johannes Kepler proposed a model to interpret the dynamic properties of the bodies of the solar system. According to thisinterpretation, the planets complete elliptical trajectories, called orbits, around the Sun. In every case, the movement is produced by the influence of the gravitational field of the Sun. Today, as part of a rapidly developing field of astronomy, it is known that planet or planetlike bodies also orbit other stars. 0

Outer Planets

Planets located outside the asteroid belt. They are enormous gas spheres with
small solid cores. They have very low temperatures because of their great distance from the Sun. The presence of ring systems is exclusive to these planets. The greatest of them is Jupiter: 1,300 Earths could fit inside of it. Its mass is 2.5 times as
great as that of the rest of the planets combined.

JUPITER

DIAMETER $\mathbf{8 8}, \mathbf{8 4 6}$ MILES $\mathbf{(1 4 2 , 9 8 4 ~ K M)}$
MOONS 60+

Asteroid Belt

The border between the outer and inner
planets is marked by millions of rocky
fragments of various sizes that form a band called the asteroid belt. Their orbits are
influenced by the gravitational pull exerted on them by the giant planet Jupiter. This effect also
keeps them from merging and forming a planet.

Inner Planets

Planets located inside the asteroid
belt. Th belt. They are solid bodies in which volcanism, which can modify their surfaces, are produced. Almost all of them have an appreciable atmosphere of some degree of thickness, according to individual circumstances, which plays a key role in the surface temperatures of each planet.

BUILDING PLANETS

Early ideas suggested that the planets formed gradually beginning with the binding of hot dust particles. Today
scientists suggest that the planets originated from the collision and melding of larger-sized bodies called
planetesimals. planetesimals.

	Phobos Deimos	MARS
DIAMETER	4,217 miles	
(6,786 KM)		

EARTH GRAVITY

DIAMETER 7926 MILES (12,756 KM) moons 1

MERCURY	
DIAMETER	3,031 MILES
	$(4,878 \mathrm{KM})$
MOONS	0

Mercury, an Inferno

$0 \Rightarrow 0$ ercury is the planet nearest to the Sun and is therefore the one that has to withstand the harshest of the Sun's effects. Due to its proximity to the Sun, Mercury moves at great speed in its solar orbit, completing an orbit every 88 days. It has almost no atmosphere, and its surface is dry and rugged, covered with craters caused by the impact of numerous meteorites; this makes it resemble the Moon. Numerous faults, formed during the cooling of the planet when it was young, are also visible on the surface. Constantly baked by its neighbor, the Sun, Mercury has an average surface temperature of $333^{\circ} \mathrm{F}\left(167^{\circ} \mathrm{C}\right)$.

Venus, Our Neighbor

1. enus is the second closest planet to the Sun. Similar in size to the Earth, it
has a volcanic surface, as well as a hostile atmosphere governed by the effects of carbon dioxide. Although about four billion years ago the atmospheres of the Earth and Venus were similar, the mass of Venuis's atmosphere today is 100 times greater than the Earth's. Its thick clouds of sulfuric acid and dust are so dènse that stars are invisible from the planet's surface. Viewed from the Earth, Venus can be bright enough to be visible during day and seconid only to the moon in brightness at night: Because of this, the movements of Venus were well-known by most ancient civilizations.

venus's phases

As Venus revolves around the
Sun, its solar illumination varies Sun, its solar illumination varits
as is seen from the Earth depending upon its position in
reation to the Sun and the relation to the Sun and the
Earth. Thus Venus has phase Earth. Thus Venus has phases
similar to the Monos. During its
el similiar to the Moon's. During
elongations, when Venus is farthest from the Sun in the sk,
Venus appears at its brightest.

Characteristics

conventionai.
PRANE SYMBBOL

(80 km) which is made up of carbon
dioixicenand sulfuric clouds
that t of IS THE THICKNESS OF which is made upp of carbo
tioxide and sulfifict tuntight. IS THE THICKNESS OF
THE ATMOSPHERE.
 $97 \% \quad 3 \%$

117°
 117°
 Rotates on it own axis sever 243 days $\frac{1}{6}$

 dioxde that constitute venus's
atmosphere erefiect the remaining light, leaving Ven II
in permanent darkness.
 athosphere , which retains
energy of the Sun's rays.
$864^{\circ} \mathrm{F}$ $\left(462^{\circ} \mathrm{C}\right)$

 ?

hundreds of millic
aon but today
water remains.
farther from the Sun and reflects all but 20 percent of the Sun's
Iight. The surface temperature of venus is reltavivy coctut light. The surface temperature of Venus is relatively constant,
averaging $860^{\circ} \mathrm{F}\left(460^{\circ} \mathrm{C}\right.$. The atmospheric pressurive on Venus is

MANTLE
Mand on molter rock,
constitutes most of the constitutes most of the
planet It traps the soliz
 14a and 6 miles
100 km thick.

 $14,400^{\circ} \mathrm{F}$ $\left(8,000^{\circ} \cdot \mathrm{C}\right)$
$\therefore \quad \therefore \quad$ Surface

Red and Fascinating

ars is the fourth planet from the Sun. Of all the planets, Mars most closely resembles the Earth. It has polar ice caps, and the tilt of its axis,
period of rotation, and internal structure are similar to those of the Earth. Known as the Red Planet because of the reddish iron oxide that covers its surface, Mars has a thin atmosphere composed essentially of carbon dioxide. Mars does not have water, though it did in the past, and there is evidence some water might exist underground. Many spacecraft have been sent to explore Mars, in part because it is the planet other than Earth most likely to have developed some form of life, and it will probably be the first planet humans leave the Earth to visit.

The first mission sent
tomens. it mide onty
brief fivovers.

2006 \qquad of the Martian surface while orbiting the planet.

Jupiter, Gas Giant

. upiter is the largest planet in the solar system. Its diameter is 11 times that of the Earth, and its mass is 300 times as great. Because the speed of Jupiter's rotation flattens the planet at its poles, its equatorial diameter is greater than its polar diameter. Jupiter rotates at 25,000 miles per hour ($40,000 \mathrm{~km} / \mathrm{hr}$). One of the most distinctive elements of Jupiter's atmosphere is its so-called Great Red Spot, a giant high-pressure region of turbulence that has been observed from the Earth for more than 300 years. The planet is orbited by numerous satellites and has a wide, faint ring of particles.

a wide, faint ring Composition

 CompositionJupiter is a giant ball of
hatet have been and compresessed hydrogen and helium
that have been compressed
into
iquid in the planet's that have been compressed
into
interitid in the eplanets
interior and into metallic rock interior and into metallic rock
in its core. Not much is know in its core. Not much is know
about Jupiter's
arere but it is believed to be bigger than the Earth's core.

conditions. The inner mantle is soup of lectrons and nuclei.

\section*{characterist
 | $\substack{\text { conventional } \\ \text { PLANEE SYMBBOL }}$ |
| :---: |} EsSEntIAL data

The Lord of the Rings

n aturn is the solar system's second largest planet. Like Jupiter, it is a larg
ball of gas surrounding a small, solid core. Saturn was the most distant planet
discovered before the invention of the telescope. To the naked eye, it looks like a yellowish star, but with the help of a telescope, its rings are clearly visible. Ten times farther from the Sun than the Earth, Saturn is the least dense planet. If an ocean could be found large enough to hold it, Saturn would float. ©

The Moons of Saturn
Saturn has more than 45 moons, making Saturn's The sizes of the moons vary from Titan's is the soo miles ($5,50 \mathrm{~km}$)
to tiny Calypso's 10 miles $(16 \mathrm{~km})$

Enlarge
recion

 extends above the clouds.
 WINDS
Saturn's winds generally Saturn's winds generally
reach speeds of about 220 miles per hour $(360 \mathrm{~km} / \mathrm{h})$
causing strong storms.

Gaseous Exterior

Saturn and Jupiter differ very little in thiei composition. Both
characteristic

conventional
PLANET SYMBOL

EsSENTIAL DATA
 satellite orbiting Saturn. From the Earth. the masseded dideris seems satelilite orbiting Saturn. From the Earth, the massed debir seens
to form large structures, but each discrete piece actually has its to form laige
own orbit.
ATMOSPHERE
< 1%
sulfir gives it
Sulfir gives it a
yellowish appearance
$\begin{array}{ll}2 \% & 97 \% \\ \text { Helium } & \text { Hydrogen }\end{array}$ Hydrogen 2man $=$ nditeme

outire matite
This layer is sormed
 ATMMOSPyige
Mänly hydrogen Nuntmon ,ntin mawin
come
$21,600^{\circ} \mathrm{F}$
(12,000 ${ }^{\circ}$ C)

Uranus Without Secrets

$\therefore \quad 0$ the unaided eye, Uranus looks like a star at the limit of visibility. It is the seventh farthest planet from the Sun and the third largest planet in the solar system. One peculiarity distinguishing it from the other planets is its anomalous axis of rotation, tilted nearly 98 degrees around the plane of its orbit, so that one or the other of Uranus's poles points, toward the Sun. Astronomers speculate that, during its formation, Uranus may have suffered an impact with a protoplanet, which could have altered Uranus's tilt. Uranus's orbit is so large that the planet.takes 84 years to completely orbit the Sun. Uranus's period of rotation is 17 hours and 14 minutes.

outerp mantie
Composed prinalily o

 \qquad \bullet

atmosphere of hydrocenen, methena is made and small amounts of acetylene and other hydrocarbbons.
$\begin{aligned} & -346^{\circ} \mathrm{F} \\ & \left(-210^{\circ} \mathrm{C}\right) \end{aligned}$

,

Surface F. For a long time, Uranus
was believed to have a was believed to have a
smooth surface. The Hubble
Space Telesconee however. Space Telescope, however
showed that Uranus is a dynamic lianet that has the
solar systemis rrightest solar system's brightest
clouds and a fracile ring clouds and a fragile ring
system that wobbes ilike an
unbalanced wheel.

REFRAGTION OF RAYS

1. In Uranss sumilight is reflected by ,

ATMOSPHERE sunlıght
$2=$

Neptune: Deep Blue

en our planet, Neptune appears as a faint, blue point invisible to the naked eye. Images sent to Earth by Voyager 2 show the planet as a
remarkably blue sphere, an effect produced by the presence of methane in the outer part of Neptune's atmosphere. The farthest of the gaseous planets, Neptune is 30 times farther from the Sun than the Earth is. Its rings and impressive clouds are noteworthy, as is its resemblance to Uranus. Neptune is of special interest to astronomers because, before its discovery, its existence and location were predicted on the basis of mathematical calculations. 0

Moons

were observed from space by the U.S. space probe Voyager 2. werre observed from space by the u.s. space probe Vovager 2 .
All the names of Neptune's satellites correspond to ancient
Greek marine detitits.

Surface
 circuating at some of the fastest speeds in
the solar system. Neptune's winds reach 1,200
miles per hour 2000 knm miles per hour $(2.000 \mathrm{~km} / \mathrm{h})$ from east to west
swirliga against the direction of the planet's
rotation. swiring a a
rotation.

TITITON TRITON

 stripes tormed bed the
materist spewed from its
geversis and volcanoes.

Rings

D. Uranus has faint tings of dust. When they Were discovered from the Earth,
astronomers thought the rings formed
incomplete arcs. The ring names astronomers thoughit the ring
incomplete arcs The ring nam
ihnor the first scientists .honor the first scier
to study Neptune.
\bullet
ADAMS
 prominent arcs, or sections, namec prominent ares, or sections, named

part of the outter ring
contin vainsh before the
22nd century
22nd century.

Pluto: Now a Dwarf

. Pluto stopped being the ninth planet of the solar system in 2006 when
the International Astronomical Union decided to change the classification of cold, distant Pluto to that of dwarf planet: This tiny body in our solar system has never had an imposing profile, and it has not yet been possible to study it closely. Ali that is known about Pluto comes through observations made from the Earth,or Earth orbit; suich as those made by the Hubble Space Telescope. Despite the lack of information gathered about Pluto, it is notable for its uniquie orbit, the tilt of its axis, and its location within the Kuiper belt. All these characteristics make Pluto especially intriguing., 0

A Double World Pluto and itst largest satellite, Charoninheve aver special relationshio. They have been called relationstip. They have been called double planets-the diameter of Charo double planets- the ciameter of cha is about that of Pluto one theory. hypothesizizs that Charon was formed from ice that was torn from Pluto when trom ie that was torn from Puto when another object collided with the dwarf nlanet. anoturer planet.

Surface

SYNCHRONIZED ORBITS

The orbital arrangement of Pluto and Charon is unique Each. alway faces the other, makino the two seem connected bbyn
invisible bar. The synchronization of the two bodies is such that
an observer on one side of Pluto would be able to see Charon, but another observer standing on the other side of the planet
could not see this moon due to the curvature of the pilanet.

Moons

In addition to Charon, which was
dis sovered in 1978 , pluto is orbited by two additional moons, Nix and Hydra, first by
obsenved in 2005. Unike the surface of Pluto. observed in 2005 . Unike the surface of Putto,
which is made of frozen nitrogen, methane, and carbon dioxide, Charon appears to be covered with ice, methane, and carbon
dioxide. One theory hoods that the matter that coxice. ne theory hous nat the matter that
formed this satellite was ejected from Pluto as a result of a collilision' an origin similiar to as a resslt of a collision, an origin
that ascribed to Earth's moon.
density
Charor's densitit is between
0.7 and 0.8 surce per cubic
 indicating that its composition
does not include mich rock

730 miles (1,172 km) $\underset{\substack{\text { Chyran's ciameter-half } \\ \text { of Pluto s.s }}}{ }$

Composition

 ice. This frozen surface is matde un of of percent
nitrogen, as well as traces of solid fied epron nitrogen, as well as traces of solidififed carbon monoxide
and methane. Recently scientists have concluded that.

$$
\begin{aligned}
& \begin{array}{l}
\text { Pluto is an object that belongs to the Kuiper belt, a groo } \\
\text { of objects left tver from the formation of the outer }
\end{array} \\
& \begin{array}{l}
\text { of objects left over from the formation of the outer } \\
\text { planets. In addition to arge amounts of frozen nitroge }
\end{array}
\end{aligned}
$$ Pluto has simple molecules containining fydrogen an

oxycen. the buidding blocks of tis.

ATMOSPHERE Plutos ver thin atmos

 98\% Nitrogen
2%

characteristics
Convent INMAL
PAAEE SMMBEOL E $\underbrace{}_{\substack{370,000,000 \\(5900,000,000 \text { miles }}}$

\qquad | $(4.8 \mathrm{~km} / \mathrm{s})$ |
| :---: |
| 0.0027 |
| 0.067 |

 | Atmosphere | Vent thin |
| :--- | :--- | :--- |
| Voons | 3 | In both cases, Earth $=$ = 122° One rotation

ants
antrith days
Eals

core

 The coro ismadeon iron,
nidel, fond
nsichetes.

MANTLE
The mante is is
firver on water.

NTW Horizons mission

A PECULIAR ORBIT
Pluto's orbit is noticeably ylliptical, and it is titted 17* from the plane of the e pllyenetst orbitits. The e sistance
between Pluto and the Sun varies from $2,500,000,000$ to $4,300,000,000$ miles $4,0,000,000,000$ to to $4,300,000,000$ miles $(4,000,000,000$ to
$7,000,000,000 \mathrm{~km})$ During each 248 -year orbit, Pluto orbits closer to the Sun than Neptune for nearly 20 years. Although Pluto appears to cross paths
Neptune, it is impossible for them to collide.

6,387
teirestrial days is the time
Pluto takes to convelet

Distant Worlds

- arther even than Neptune, the eighth planet, we find frozen bodies smaller than the Earth's Moon-the more than 100,000 objects forming the Kuiper belt, the frozen boundary of our solar system. Recently astronomers of the International Astronomical Union decided to reclassify Pluto as a dwarf planet because of its size and eccentric orbit. Periodic comets (comets that appear at regular intervals) originate in the Kuiper belt. Nonperiodic comets, on the other hand, come from the Oort cloud, a gigantic sphere surrounding the entire solar system. o

Comparable Sizes

 The discoverv of Quaoar in 2002alloweds scientistst to find the link
they had long looked for between the they had long looked for between the Kuiper belt and the origin of the solar
system. Quaar's almost tircular orbit system. Quaoar's simost irictuar orbit to the Kiuper belt and orbit the Sun. At the ofiticial meeting of the International
Astronomial U.ion on August 2 2006,
Pluto was reclassified from a planet to a Pluto was reclassified from a planet to a
dwarf planet. For the time being, any dwart planet. For the time being, any
further bojects discovered in the Kuiper bet full be classified in the same category. Larger than Pluto its
diamethi shut 1,900 diameter is about 1,90
miles $(3,000 \mathrm{~km})$.
\bigcirc or more, possiele extrasolar planets
have Been detictio.

Kuiper Belt
Extending outward from the orbit of Neptune are many frozen worlds similiar in some ways to
 diameter of 810 miles (1.300 km). The Kiiper belt, estimated to contain more than 100,000 bodies of
ice and rock larger than 60 miles (100 km) in diameter (including Pluto). spreads out in the shape of a ice and rock larger than 60 miles (100 km) in diameter (including Pluto), spreads
wide ring. Many of the comets that approach the Sun come from the Kiiper bett.

1,410 miles (2,274 km)
is the diameter of Pluto-750 miles (1,200
$\mathrm{km)}$ sualler than the Farth's Moon. Because
 of its size ennd orbitit Pluto s s oonsidered a.
dwaif planet instead of a planet.

Construction Debris: Asteroids and Meteorites

- ver since the formation of the solar system, the melting, collision, and rupture of various materials played an essential role in the formation of the planets. Remnants of this process remain in the form of rock debris, which serves as witnesses to the formation of the solar system. These objects are also associated with episodes that influenced subsequent evolutionary processes on Earth. They are a possible cause of the mass extinction of dinosaurs more than 60 million years ago. o

Extraterrestrial

- One of the main goals of scientist who study meteorites is extraterrestrials solidid and gateses. Scientific tests have confirt exuaterestial solid and gases. Scientific tests have contirm
that some meteorites are from the Moon or Marss but most
meteorites are associated with asteroids. The simples ont meteorites are associated with asteroids. The samples obtained
from meteorites are analyzed and classified by their composition.

A HUGE METEORITE STRIKES

 tiat many scientists believed might have led to thit
extinntion of dinosaur and many otheres species
about 65 millon years aco.
1.

Exp.LOSION
The friction created as a
meteorite falls through the meteorite falls through the
increases its temperature.
Thes This is how an ignition
process is started.

7 miles per secon

TYPES OF METEORITES

iron
 iron and nicgel
con of
created
cred iny they arr iron and nickel
conpuouns. The
created it the
of asteroids.

2. $\begin{gathered}\text { DTVISION } \\ \text { The fragmentation of } \\ \text { a meteorite culses a }\end{gathered}$ a meteorite causes a
visual effect called a visual effect calle
shooting star.
3.

Those with a Tail

omets are small, deformed objects a few miles in diameter that are normally frozen and dark. Made of dust, rock, gases, and organic molecules rich in carbon, comets are usually found in orbits beyond that of Neptune in the Kuiper belt or in the Oort cloud. Occasionally a comet, such as Halley's comet, veers toward the interior of the solar system, where its ice is heated and sublimates, forming a head and long, spectacular tails of gases and dust.

Types of Comets

Periodic comets Comets that leave their riginal generally settle into new trijectories.
Halley's somet, for example, completes Halley's comet, for example, comp
its slongated orbit in 76 years.

THE HEAD

 HEAD
Deep Impact Mission

 On January 12, 2005, as part of the toward the comet 9 P/Temper 1 , where it
obtained samples to be studied on Earth.
\therefore
$1 .=$
1.
 copper procectile that wi
collide e with the

IMPACT WITH THE COME
2. took place on Uuly 4 , 2005. The projectile generateua a
crater the size of a football
field and seven stories deen.
miles per hour
($36,000 \mathrm{~km} / \mathrm{h}$)
VELOCITY Of THE
comit IMPAGT

$$
\begin{aligned}
& \text { crater the size of a football } \\
& \text { field and seven stories deep. }
\end{aligned}
$$

. . un sto ies deer

PREVIOUS MISSIONS

 ended after crossing the tail of the

FORMATIO AND HEAD

 Because of the effects of solar radiation an the solar wind, gases and dust are rele
from an accelerating comet. The dist
 is less sensitive to the e pressunge of the the solia
wind. As the comet leaves the confines of wind. As the comet teaves the confines of
the solar system its 5 tails coincide once the solar system, it tails coincidie once,
more, but they disappear as the nulleus
cools down and ceasses releasing gaces. s down and ceases releasing gases.

The Earth and the Moon

I
n the beginning, the Earth was an incandescent mass that slowly began to cool, allowing the continents to emerge and acquire their current form. Although
many drastic changes took place during these early eras, our blue planet has still not stopped changing. It must be recognized that life on Earth would be impossible without the presence of the
atmosphere-the colorless, odorless, invisible layer of gases that surrounds us, giving us air to breathe and protecting us from the Sun's harmful radiation. Although the atmosphere is
approximately 435 miles (700 km) thick, it has no clear boundary and fades into space until it finally disappears. \bullet

The Blue Planet

- he Earth is known as the blue planet because of the color of the oceans that cover two thirds of its surface. This planet, the third planet from the Sun, is the only one where the right conditions exist to sustain life, something that makes the Earth special. It has liquid water in abundance, a mild temperature, and an atmosphere that protects it from objects that fall from outer space. The atmosphere also filters solar radiation thanks to its ozone layer. Slightly flattened at its poles and wider at its equator, the Earth takes 24 hours to revolve once on its axis.

The Phenomenon of Life $\quad 70 \%$

 and

Once Upon a Time

T he Earth probably formed from material in the solar nebula-the cloud of gas and dust that led to the formation of the Sun. This material gradually grew into a larger and larger body that became a red-hot ball of rock and metal. Later the rocky crust formed, its surface cooling enough to allow the continents to appear. Even later the oceans arrived, as well as the tiny organisms that released oxygen into the atmosphere. Although much of this gas was initially consumed in chemical reactions, over time, it allowed the development of multicellular organisms and an explosion of life that took place at the start of the Paleozoic Era, 542 million years ago.

Continental Drift

We live on the continents, which are part of movable plates that million years agos, India, Africa, Australia, and Antartinctica were part
of the same continent. When tectonic plates r the aginst of the same continent. When tea, Austontaialia, and Antast rutarctica we waint aech
other, land and oceanic crust earthiuakees occur . Where the other, land and oceaaic crust earthauakes occurr. Wh
plates separate, a rift formss. The mid-ocear ridges t ti
run beneath the run beneath the oceans are formed by lava that
emerges from the rifts between tectonic plates. W emerges from the rifts between tectonic plates.
plates collide, aprocess called subduction takes
place, , which the rocks of the oceatic floor are place, in which the rocks of the oceanic floor are
drawn under the continent and melt, remerging in the form of volcanoes.

(1)

290 MILLION YEARS AGO The supercontinent called Pangea
formed. An immense occan called formed. An immense ocean c
Panthalassa surrounded it.

Origin of the Earth

The Earth was formed 4.6 billion years ago from a molten, constantly active, mass. As time . asssed, the Eart began to cool, and the
fell, creating the ocean

A $\begin{gathered}\text { Ball of fire } \\ \text { The earth was } \\ \text { created from sml }\end{gathered}$ created from smal
partifle sthat
coilesedal

(4)

60 MILLLION YEARS AGO The northern Atlantic Ocean slowly
separated, completing the formation of separated, completing the
Europe and North Africa.

Chronology

Geology is the study of rocks in the Earth's $\begin{aligned} & \text { Through the study of fossis-remains of creatures } \\ & \text { buried in the Earth's various sedimentary layers } \\ & \text { crust. It divides the Earth's history into }\end{aligned}$ ll drust. It divideds she Earth's history into diifferent eras, periods, and epochs sasting millions
of years. Geoology als helps us catalag the
processes of evolution processes of evolution-changes in generation species sadart
competitors.

FOSSILS

Tectonic Plates
The surface of the Earth is shaped by tectonic plates. There are eight major plates, some of which even encompass entire continents. The plates
borders are marked by ocean trenches, cliffs, chains of volcanoes, and earthquake zones
are remains of living beings preserved in
the rocks as a recorrd of the Earth's history.

Eclipses

- ypically four times a year, during the full or new moon, the centers of the Moon, the Sun, and the Earth become aligned, causing one of the most marvelous celestial phenomena: an eclipse. At these times, the Moon either passes in front of the Sun or passes through the Earth's shadow. The Sun-even during an eclipse-is not * safe to look at directly. since it cian cause irreparable damage to the eves, such as burns on the retina. Special highquality filters or indirect viewing by projecting the Sun's mage on a sheet of paper are some of the ways in which this celestial wonder can be watched. Solar eclipses this celestial wonder can be watched. Solar in addition, a good opportunity for astronomers to conduct scientific research.

total lunar EELAPL LISAR
FROM THE SARTH
The orange color comes from anlight that has been refracted

\because
 8

 batmosphe
Solar Eclipse

Solar eclipses occur when the Moon
passes directly between the Sun and pases directly between the Sun and the
Earth, casting a shadow along a path on the Earth's surface. The central cone of the shadow
is called the umbra; and the area of partial. is calide the umbra, and the area of partial.
shadow round it is called the penumbra. Viewers in the regions where the umbra falls on the Earth's'surface see the Moon's disk
completely obscure the Sun -a total solar conpitele obscurre the Sun-a total solar
edipse.. Those watching from the surrounding
eren areas that are located in the penumbra see the partial solar eclips.

$400=$

DISTANCE
THE EARTH
$400=$

stronomy was born out of humankind's need to measure time and seasons, marking the best times to plant. In ancient times, the study of the stars
was mixed with superstition and ritual. The megalithic monument Stonehenge, found in southern England, is an example of this. Today, thanks to advances in new technologies, such as the giant telescopes
installed in various locations around the planet, we have discovered many new things about the universe. The VLT (Very Large Telescope), astronomy's new monster telescope located in Chile, is
> part of an attempt to find planets beyond the solar system, because many astronomers suspect that life is not exclusive to the Earth. \bullet

Astronomical Theories

- or a long time, it was believed that the Earth was stationary. The Sun, the Moon; and the planets were thought to orbit it. To study the sky and calculate its movements, people began to build instruments, such as the astrolabe, armillary sphere, and telescope. The telescope revolutionized the conception of the universe. Instead of the Earth being at the center of the universe, it was suggested that the Earth and other planets travel around the Sun. The and other planets travel around the Sun. The for a time, persecuted dissident astronomers for a time, persecuted dissid
and banned their theories.

Geocentric Model

 particular, those of Aristotle, who had proposed the Earth as the
center of the universe, with the celestial objects enverse, wivith the
it) Although other ancient it). Although other ancient
astronomers, such as Aristarchus astronomers, such as Aristarchus
of Samus, roposed that the Earth
was round ond roteted wrent the was round and rotated around Sun, Aristoties ideas were
aiccepted as true for 16 centuries, actepped at strue tor 16 centuries,
and at imes Aristote's ideas were defended and preserved by
Roman Catholic Church.

MeASUREMENTS

Noticing that the Sun, the Mon, and the stars
moved in cycles, ancient civilizations found the
moved in cyccles, ancient civiizations tound t
could ise the sky as botha clock and a calen
could use the sky as both a clock and
Howeer, ancient astronomers had
difficultities performung the complex

 conougnt to create a trully precise
calendar. A sefulut tool developed
to perform this task was the to perform this task was the
astrolabe. Its engraved plates reproduce the celestava sphere in
two dimensions, allowno the two dimensions, allowing the
elevations of the celestial bodies elevations of the
to be measured.

cosmic characters

(9)3 2nd Century

chantius Proleny
Resurrected and compied the
works of great Greek
atsonomer situ two
books.
His postulutes held

Heliocentric Model

In 1543 a few months before his death,

 .

sconemes

e universe and all the the celestial bodies were thoughit to be spherical, he arguied tinat theiria movemenentre must inso alo be
circular and uniform (the Ptolemaic system considered the

 irregular, the Earth must not be the center of the universe These ciscoveries were contrary to the views
by the Roman Catholic Church. In fact, both
Roman Catholics ands
by the Roman Cathoic C
Roman Catolica sund
Protestants suppressed
Protestatits suppressed
any yritings
advocating these beliefsts.
When Givt ite
ady witanus
adhese beliefs.
When Galileo Gaillei was
When Gallioe Gallei was
broughat to trial by the Roma
Catholic Church for
Crought to triar by the
Cathoicc Church for
avocatinut the Copernic
advocating the Copernican
theora,
theory, he was force
renounce his views.

Sprinkled with Stars

onstellations are groups of stars thought to represent
different animals, mythological characters, and other figures Constellations were invented by ancient civilizations to serve reference points in the Earth's sky. There are 88 of these
collections of stars. Although each star in a constellation appears related to the others, it is actually very far from them. Not all the constellations are visible at the same time from any one place on the Earth.

Star
magnituddes

Stellar Movements
The visible regions of the celestial sphere
and the ways in which stars move
throurgh the sis and the ways in which stars move
throught the sky depend upon the observer's
latitude. As an observer moves through the sty depend ypon the observers
latitude. As an observer moves north or south
the visibe potite of the visibe portion of the celestiar sphere will
change. The elvation of the orth or change. The elevation of the north or south
celestial pole above the horizon determines celestial pole above the horizon determin
apparent motion of the stars in the sky

A Four-Eyed Giant

- he Paranal Observatory, one of the most advanced in the world, is located in the region of Antofagasta, Chile. It uses four identical telescopes to obtain enough lightgathering power that it could see the flame of a candle on the surface
of the Moon. This sophisticated collection
of digital cameras, reflecting mirrors, and other instruments is mo structures weighing hundreds of tons. The Very Large Telescope (VLT) is operated by a scientific consortium drawn from eight Eunsortium drawn from eightries. One of their European countries. One of their
stated objectives is to discover stated objectives is to discover
new worlds orbiting other stars.

CLIMATIC CONDITIONS

Cerro Paranal is located in the criest part of the Atacama desert, where the conditions for
 mountain that has about 350 cloudless nights a year.
 resolution similar to that possible from space.

Cerro Paranal Observatory

215,000 SQ FT 7,759 FEET (2,365 m) asove sea level

ADAPTIVE OPTICS

To prevent the primary mirror from deforming because of
gravitational effects, the VIT hos an gravitational effects, the VIT has an adapative optics system that maintains the mirror in optimal shape, with
150 supporting pistons that continully divst the shappe of the miriror.

[^0]
Glossary

Annihilation

Total destruction of matter in a burst of energy, as when it encounters antimatter.

Antigravity

Hypothesized force, equal to gravity and diametrically opposed to it.

Antimatter

Matter formed from subatomic particles with shared properties. Its electrical charge is opposite that of normal matter

Aperture

Diameter of the main mirror of a telescope or eyepiece. The larger the aperture, the more light the device receives.

Aphelion

The point in a celestial body's orbit farthest from the Sun. The Earth reaches aphelion on or about July 4 , when it is 95,00
$600,000 \mathrm{~km}$) from the Sun.

Apogee

The farthest position from the Earth reached by the Moon or any of the artificial satellites that orbit the planet.

Asteroids

Minor bodies of the solar system, formed by rock, metal, or a mixture of both. Most asteroid Jupiter. Their size ranges from dozens of feet to hundreds of miles.

Astrolabe

Ancient astronomical instrument for measurin both the positions and the movements of celestial objects.

Astronomy

Science that studies the universe. It is concerned with the physical characteristics, movements, distances, formation, and
interactions of galaxies, stars, planets, moons, comets, asteroids, and other celestial bodies.

Atmosphere

Layer of gas retained around a planet by its gravity. It is also the outer layer of matter in a interior is emitted in the form of radiation.

Atom

The smallest part of an element that partakes of all the element's properties. It is generally neutron, the proton and the electron

Aurora

Luminous phenomenon, with red and green layers, visible in the skies of the polar regions. particles with the Earth's atmospher

Austral

Related to the Southern Hemisphere

Big Bang

Cosmological theory asserting that the universe began to exist as a result of a great explosion accurred some 14 billion years ago.

Big Crunch

Cosmological theory asserting that the universe would undergo a final, complete collapse if it were to begin to contract.

Black Hole

Celestial body so dense that not even light can escape its gravity.

Black Hole, Stellar-Mass
Black hole produced by the explosion of a massive star as a supernova. Its mass is typically about 10 times that of the Sun.

Black Hole, Supermassive
Black hole located at the center of a galaxy and
formed by material that falls into the central region of the galaxy. Its mass can be a billion times that of the Sun.

Carbon

One of the most common elements in the universe, produced by stars. All known life is carbon-based.

Chromosphere

he lowest layer of the Sun's atmosphere. It emits a pinkish-red light that can be seen only when the brighter photosphere is obscured during a total eclipse.

Circumpolar Star

Any star always visible to an observer on the Earth as it rotates about the celestial pole.

Comet

Object made of ice and rock dust. When a comet approaches the Sun, the growing heat causes the ice to evaporate, forming a gaseous head and a tail of dust and gas pointing away from the Sun.

Constellation

Group of stars in the sky. Constellations tend to bear the names of mythological characters or creatures. To astronomers, the constellations demarcate regions of the sky.

Core
In a planet, a solid, high-pressure central mass; a a star, the central region undergoing nuclear fusion; in a galaxy, the innermost light-years.

Corona

Upper atmosphere of the Sun. It is visible as a pearly halo during a total solar eclipse.

Cosmos

Another name for the universe.
Crater
Circular depression formed by the impact of
a meteorite on the surface of a natural satellite or a planet.

Crust

Rocky layer of the surface of a planet or natura satellite.

Curvature of Light

Distortion of light rays when passing through regions with strong gravitation.

Decay

Process by which radioactive elements and unstable particles become stable substances Also the way in which black holes eventually appar

Density

Degree of solidity of a body (its mass divided by its volume).

Eclipse

Visual concealment of one celestial body by another. A lunar eclipse occurs when the Mo eclipse takes place when the Earth passes into the Moon's shadow.

Ecliptic

Imaginary line around the sky along which the Sun moves during the year. The orbits of the the ecliptic.

Electrical Charge

Property of particles causing them to either attract or repel each other because of electrical forces. Electrical charges are either positive or negative.

Electromagnetic Radiation
Radiation composed of magnetic and electric fields moving at the speed of light. It encompasses radio waves (long wavelengths), wavelengths).

Element

A basic substance of nature that cannot be diminished without losing its chemical properties. Each element (such as hydrogen, helium, carbon, oxygen) has its own characteristics.

Elliptical Orbit

Orbit shaped like a flattened circle. All orbits are elliptical. A circle is a special form of an ellipse.

Energy

The capacity to do work.
Event Horizon
The edge of a black hole.

Extraterrestrial

Foreign to the Earth.

Force

Something that changes the motion or shape of a body

Galactic Filament

Structure formed by superclusters of galaxies stretching out through great portions of space. Filaments are the largest structures in the universe and are separated by great voids

Galaxy

Collection of billions of stars, nebulae, dust, and interstellar gas held together by gravity.

Galaxy Cluster

Group of galaxies linked together by gravity.

Gamma Rays

orm of electromagnetic radiation with greatest energy and shortest wavelength. It is generated by only the most powerful phenomena in the universe, such as supernovae or the fusion of neutron stars.

General Relativity

Theory formulated by Albert Einstein in 1915. In part, it holds that gravity is a natural consequence of the curvature of space-tim caused by the presence of a massive body. In general relativity, the phenomena of classical mechanics (such as the orbit of a planet or the fall of an object) are caused by gravity and space-time.

Gravitational Wave

Waves in space that travel at the speed of light and are produced by the movements of very massive bodies

Gravity
Attractive force between bodies, such a
between the Earth and the Moon
Greenhouse Effect
Temperature increase caused by gases (such as carbon dioxide and methane) that prevent the surface heat of a planet from escaping into space.

Heliosphere

The region of space around the Sun in which its effects are evident. It extends some 100 ormical units around the Sun.

Helium

The second most common and second lightest element in the universe. It is a product of the big bang and of nuclear fusion of stars.

Hubble Constant

Number that measures the rate of expansion of the universe. It is expressed in kilometers per second per millions of parsecs. It is currently estimated at $70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$.

Hydrogen

The most common and lightest element in the universe; the main component of stars and galaxies.

Hypernova

Destruction of a massive star, which emits a wave of gamma rays extending great distances across the universe.

Implosion

Collapse of a body upon itself in response to great external pressure.

Infrared Radiation

Heat radiation, with a wavelength between Heat radiation, with a wavele
visible light and radio waves.

Intergalactic Space

Space between galaxies.

Interstellar Space

Space between the stars.

Ionosphere

Region of the Earth's atmosphere that is electrically charged and is located between 30 and 370 miles (50 and 600 km) from the Earth's surface.

Kuiper Belt

Region of the solar system that is home to
millions of frozen objects, such as comets. It stretches from the orbit of Neptune to the inner limit of the Oort cloud.

Light

Electromagnetic radiation with a wavelength visible to the human eye.

Light Pollution

Brightness of the sky originating in street Brightness of the sky originating in street
illumination and other artificial lighting, which impedes the observation of dim celestial objects.

Light-Year

Standard astronomical measurement unit equivalent to the distance traveled by light, or
year Equivalent to 6,000,000,000,000 miles (10,000,000,000,000 km).

Lunar Mare

The large, dark regions of the surface of the Moon. They were originally thought to be seas, by lava.

Magnetic Field

The area near a magnetic body, electric current, or changing electric field. Planets, stars, and into space.

Magnetosphere

Sphere that surrounds a planet with a magnetic field strong enough to protect the planet from the solar wind.

Mantle
Layer that lies between the crust and the core of a planet.

Mass

Measure of the amount of matter in an object.

Matter

The substance of a physical object, it occupies a portion of space.

Meteorite

Rocky or metallic object that strikes the surface of a planet or satellite, where it can form a crater.

Milky Way
The galaxy to which the Sun and the solar system belong. It is visible as a pale band of light that crosses our night sky.

Molecule

Smallest unit of a pure substance that has the composition and chemical properties of the substance. It is formed by one or more atoms.

Moon

The Earth's natural satellite is called the Moon The natural satellites of other planets are commonly known as moons and have their own proper names.

Nebulae

Clouds of gas and dust in space. Nebulae can be seen when they reflect starlight or when they obstruct light from sources behind them.

Neutron

Electrically neutral subatomic particle. It makes up part of an atom's nucleus (with the exception of ordinary hydrogen).

Neutron Star

Collapsed star consisting mostly of neutrons.

Nova

Star that increases greatly in brightness for several days or weeks and then slowly fades. Most novae probably occur in binary-star systems in which a white dwarf draws in matter from its companion star

Nuclear Fusion

Nuclear reaction in which relatively light
elements (such as hydrogen) form heavier elements (such as helium). Nuclear fusion is the source of energy that makes stars shine.

Oxygen

Chemical element vital to life and to the expansion of the universe. Oxygen makes up 21 percent of the Earth's atmosphere.

Particle

In particle physics, a tiny, individual component of matter with characteristic mass, electrical charge, and other properties.

Perihelion

The point in a celestial body's orbit closest to the
The point in a celestial body's orbit closest to the

January 4 , when it is $92,000,000$ miles ($147,500,000 \mathrm{~km}$) from the Sun.

Photon

Elemental particle responsible for electromagnetic radiation. Photons are the most common particles in the universe.

Planet

Roughly spherical object made of rocks or gas orbiting a star. A planet cannot generate its own light but reflects the light of its parent star.

Polestar

Polaris, a star that lies near the celestial north pole. Polaris is commonly called the North Star. Over thousands of years, other stars will become the polestar.

Proton

Subatomic particle with positive electrical
charge. It forms part of the nucleus of an atom.

Radio Galaxy

Active galaxy emitting energy as both radio waves and light. Most of the radio emission originates at the core of the galaxy.

Solar Flare

Immense explosion produced on the surface of the Sun by the collision of two loops of the solar magnetic field.

Solar Mass

Standard unit of mass against which other objects in the universe can be compared.
. times as much mass as
Space
The medium through which all celestial bodies move.

Space-Time
Four-dimensional conception of the universe in which length, width, and height constitute thre
dimensions and time acts as the fourth.

Spectral Analysis

Study of spectral lines that provide information bout the composition of stars or galaxies and their redshifts.

Spectrum

The result of dispersing the electromagnetic radiation of an object so that the wavelength of which it is composed can be seen.
Dark lines that originate from elements that specifice wavelengths reveal the composition of the object.

Speed of Light

The distance traveled by light in a vacuum in one second (approximately 186,000 miles, or $300,000 \mathrm{~km}$). No object can move faster than the speed of light.

Star

Enormous sphere of gas (generally hydrogen) that radiates light and heat. The Sun is a star.

Star Cluster

Group of stars linked together by gravity. Open clusters are scattered groups of several hundred stars. Globular clusters are dense spheres of several million old stars.

Sunspots

Dark, relatively cool spots on the surface of the
Sun. They tend to be located on either side of the solar equator and are created by the solar magnetic field.

Supernova

Explosion of a massive star at the end of its life.
Tide
The effect of the gravitational pull of one astronomical object upon the surface of

Unstable

Tendency to change from one state into another Tess energetic one. Radioactive elements decay into more stable elements.

Vacuum

Space occupied by little or no matter.

Van Allen Belt

Radiation zone surrounding the Earth, where the Earth's magnetic field traps solar particles.

Wavelength

Distance between the peaks of any wave of electromagnetic radiation. Radiation with a short wavelength (such as X-rays) has more energy than radiation with a longer wavelength (such as radio waves)

Zenith

Point in the sky 90° above the horizon (that is, immediately above an observer).

Zodiac

Twelve constellations through which the Sun the Moon, and the planets appear to move.
\qquad

A
accretion disc, $30,34,35,37$
active galaxy, 34-35
daptive optics system, 91
nnular solar eclipse 78
Antennae (NGC 4038 and NGC 4039)
galactic collisions, 32-33
anti-gravity, 15, 16
antimatter, 10
antiparticle, 10,11
aphelion, 75
Aristarchus of Samus, 82
Aristotle, 82
armillary sphere, 82,90
asteroid (minor planet), 5, 63
astrolabe, 82
astrology, zodiac, 84-85
big bang theory, $10,12,13,14,15,32,34,83$
geocentric model, 82
Roman Catholic Church opposition, 82, 83
See also space exploration; stargazing
atmosphere
Earth, 46, 66, 68, 70, 71
Jupiter, 50
lunar eclipse, 79
Mars, 49
Mercury, 45
Neptune, 57
Pluto, 59
Saturn, 53
solar, 42
thickness, 71
Uranus, 54,55
Venus, 46
tom, 0 , 1112 16, 17, 31
attraction, forces of nature, 16, 17, 31
baby universe, 15
Babylon, 85
background radiation, 11,15
big bang theory, $10,12,13,14,15,32,34,83$
Big Crunch, 14, 15
bimonthly star map, 86
black dwarf (star), 23
black hole, 4, 15, 19
active galaxies, 34
active galaxies, 34
anti-gravity, 15,16
anti-gravity, 15,
discovery, 30
formation, 22, 23, 29, 30
gravitational force, 30,31
Milky Way, 37
temperature, 35
blazar (galaxy), 35
blueshift, Doppler effect, 21
Butterfly Nebula (M2-9), 26

calendar, 5, 74, 82
carbon, 12, 24
Cassini division, rings of Saturn, 52
Cat's Eye Nebula (NGC 6542), 26-27
celestial cartography, 86-87
See also star chart
celestial equator, 86,87
celestial sphere, 86,87
Ceres (asteroid), 63
Cerro Paranal Observatory: See Paranal
Astronomical Observatory
Chandrasekhar limit, stellar collapse, 26
Charon (moon of Pluto), 58
chromosphere, 43
clock, 74,82
closed universe, 14
color, stars, 20-21
formation 65

Gacobini-Zinner, 64
Halley's, 64
Kuiper belt, 6, 60, 64
missions to, 64
parts, 64,65
types, 64
Cone Nebula, 4
constellation, 5, 84-85
Andromeda, 9, 85
Aquarius, 85, 87
Aries, 84, 86
Cancer, 74,86
Capricorn, 85,87
Cassiopeia, 85
celestial sphere, 86-87
Centaur, 85
cultural interpretations, 85
discovery, 84
flat perspective, 89
Gemini, 74,86
Leo, 84, 86
Libra, 85,87
locating, 86, 88-89
measuring distances, 86
motion, 88
mystery of Giza, 85
mythological characters, 85
naming, 84
near equator, 84
number, 84
observing, 84, 88-89
Dphiuchus, 85
rigin, 84
Orion, 85,88
Perseus, 85
Sagittarius, 37, 85,87
Sagittarius, $37,85,8$
Scorpius, 85,87
scorpius, sk, 8 changes, 84
Taurus, 74, 85, 86
Taurus, $74,85,86$
Ursa Major, 85
Ursa Major, 85
Virgo, 85, 87
Zodiac, 84-85, 86-87
ontinental drift, $72-73$

Coordinated Universal Time (UTC), 75
Copernican Revolution, 83
Copernicus, Nicho
corona (Sun), 43
cosmic inflation theory, 10, 11
cosmic void, 8
cosmos: See universe
Crab Nebula (M1), 29
crater
Earth, 62
Mercury, 44
Moon, 77
creation, 10-11
big bang theory, $10,12,13,14,15,32,34,83$
cosmic inflation, 10,11
time and temperature, 10-13
critical mass, 14,15
curvature of space-time, 16,31

D

dark energy, 13,1
dark matter, $4,6-7,11,12,13$
declination, 87
dew, 69
dinosaur, mass extinction, 62
Doppler effect, 21, 32
double planet, 58
dwarf planet, $5,57,58,60,61$
See also Pluto

E

$\mathrm{E}=\mathrm{mc}^{2}$ (equation), 16
Earth, 39, 41, 66-75
aerial view, 66
aphelion, 75
aphelion, 75 atmosphere, 46, 66, 68, 70, 7
axis inclination, 69, 74,75
axis inclination, $69,74,75$
center of oniverse
mparison to Mars, 48
composition, 70
continental drift, 72
continental penetration,
cooling, 7
distance from Sun, 68
equinox and solstice, 74,75
essential data, 69
evolutionary process, 62
formation, 13, 72-73
geographical coordinates, 75
gravity, 69
hydrosphere, 71
internal structure, 70-71
lithosphere, 71
magnetic field, 69, 70
magnetic inversion, 54
moon and tides, 68, 76-77
movements, 74-75
night sky, 84-85, 88-89
nutation, 74
oceanic penetration, 70
oceans, 68,73
one day, 72
orbit, 75
origin, 8,73
ozone layer, 74
perihelion, 74
revolution, 68,74
revolution, 68,74
rotation, 21, 68,74
rotation, $21,68,74$
solar radiation, 71
solar radiation, 71
thermospher
tides, 76
time zones, 75
water, 68-69, 71,
eclipse, 78-79
lunar 79
observation from Earth 79
solar, 78
Einstein, Albert, 16
electromagnetism, 11, 16, 17, 69
electron, $10,11,12$
electron, $10,11,12$
elliptical galaxy, 33
energy, 16, 34, 42
Enke division, 52
enkuinox, autumn and spring, 74
Eris, Kuiper belt objects, 61
Eta Carinae Nebula, 18-19, 29, 36
evaporation, 68
event horizon, black holes, 31
evolution, timeline, 72-73
extrasolar planet, discovery, 61

4

filament, 9, 12, 29 flat perspective, 89 flat universe, 14,16 forces of nature, 16-17
electromagnetism, 11, 16, 17, 69
gravity, 11, 14, 16, 69, 76
nuclear interactions, $11,16,17$
unified, 11,16
fossil, 73
frost, 69
G

Gacobini-Zinner comet, 64
galactic cluster, 33
galaxy, 8,9
active, $34-35$
classification, 33, 35
classification
clusters, 33
collision, 19, 32-33
energy emission,
expansion, 8,83
expansion, 0, $8,34,3,35$
galactic clusters, 33
Mice, The, 32
Milky Way, 5, 8, 32, 33, 36-37
number, 9
number, 9
stabilization, 35
subclassification, 33
superclusters, 9,1
total numb
Galileo Galilei, $5,36,51,83$
Gamow, George, 15
gas, $12,34,37$
general theory of relativity, 16, 31
geocentric model (astronomical theory), 82
geology, 73
Gliese (star), extrasolar planet, 61
globular cluster, 21
gluon, 10, 11, 17
graviton, 10
gravity (gravitation), 11, 12, 14, 16, 17
black holes, 30, 31
dark matter, 7
Earth, 69
galaxy formation, 12, 34, 35
Jupiter and asteroid belt, 41
Milky Way, 37
moon, 76
Newton's theory, 16, 17
precipitation, 69
Sun, 40, 41
tides, 76
weight, 69
Great Dark Spot (Neptune), 57
Great Red Spot (Jupiter), 50, 57
reenhouse effect, Venus, 46
Greenwich meridian, 75

Guth, Alan, 11

hail, 69
Halley, Edward, 33
Halley's comet, 64
Hawking, Stephen, 5, 14
heliocentric model (astronomical theory), 83
elium, $11,12,17,20,22,24,42,57$
Helix Nebula (NGC 7293), 27

Hercules Cluster (NGC 6205), 33
Herctzsprung-Russell diagram (H-R diagram), 20, 24, 25
20, 24,25 sapiens, first appearance, 13, 72,73
Homo sapiens, first appearance, 13
Hourglass Nebula (MYCN 18), 27
Hubble, Edwin, 15, 32, 33, 83
Hubble Space Telescope, 55, 58
hydrogen, $11,12,17,20,21,22,24,26,42,57$

T

Ida (asteroid), 63
impact crater, 44, 62, 77
inner planet, 41 interferometry, 91 International Astronomical Union, 57, 60 intrinsic luminosity, stars, 20
iron meteorite, 62
irregular galaxy, 33
e
jet lag, 75
Jupiter, 41, 50-51
missions to, 51, 83

Kant, Immanuel, 32
Kepler, Johannes, 40, 82, 83
Kirkwood gap, asteroid belt, 63
Kuiper belt, 5, 59, 60-61, 64

J

Large Magellanic Cloud (galaxy), 28, 36 latitude, 75,87
life, ex
light \quad bending 17
spectral analysis, 20, 21
light-year, 8, 20
uminosity, stars, 20-21, 24, 25
lunar eclipse, 79
\square
macrospicule, 43
magnetic field, $37,45,51,54,69$
magnetic inversion, 54
magnetosphere, 51
main sequence, stellar life cycle, 20
map, celestial cartography, 86-87
Mars, 39, 41, 48-49
exploration, 48-49
Olympus Mons, 38-39, 49
mass, 16,17
matter, $10,11,12,13,30$
Mercury, 41, 44-45
mesosiderite (meteorite), 62
meteorite, 62-63
See also asteroid

methane, 58

Mice, The (NGC 4676), galactic collision, 32
Milky Way, 5, 8, 32, 33, 35, 36-37
moon
Earth: See Moon
Galilean, 51
Mars, 48
Mars, 48
Neptune, 56
Saturn 52
Tunus 55
Moon (Earth's), 68, 76-77, 89
eclipses, 79
eclipses, 79
landscape, 77,83
looking at, 88
mythology, constellations, 85

N	open universe, 15 orbit, 40
	Earth, 75
neap tide, 76	Eris, 60-61
nebula, 22	Mars, 48
Butterfly, 26	Mercury, 44, 45
Cat's Eye, 26-27	Neptune, 60
Cone, 4	Pluto, 58, 59, 60-61
Crab, 29	Saturn, 60
Eta Carinae, 18-19, 29, 36	Uranus, 60
Helix, 27	outer planet, 40
Hourglass, 27	ozone layer, 68, 71
NGC 6751, 25	
planetary, 3, 22, 23, 25, 26	
solar, 72	D
Spirograph, 26	1

Spirograph, 26
Neptune, $40,56-57$
missions to, 56,83
orbbit, $60-61$
Orbbit, $60-61$
neutrino, $11,17,42$
neutron, 111, 17, 42
neutron star, 22, 23, 29, 31
Newton, Isaac, 16, 17, 83
NGC 6751 (nebula), 25
1987a supernova, 28

0

observation: See stargazing
observatory
Jaipur, $90-91$
Jaipur, 90-9
Lick, 90
Mauna Kea, 90
Paranal, 90
Stonehenge, 80-81, 90-91
Yerkes, 90
ocean, creation, 73
Olympus Mons (Mars), 38-39, 49
Omega Centauri (star cluster), 21
Oort cloud (region of Solar System), 60, 64 open cluster, 21

> open universe, 15 orbit, 40 Earth, 75 Eris, $60-61$ Mars, 48 Mercury, 44,45 Neptune, 60 Pluto, 58, 59, $60-61$ Saturn, 60 Uranus, 60 outer planet, 40 ozone layer, 68,71
parallax, 21
parallels, geographical coordinates, 75
Paranal Astronomical Observatory, 90,91
See also Very Large Telescope
parsec, 20
partial eclipse
lunar, 79
solar, 78
penumbra, $43,78,79$
penumbral lunar eclipse, 79
Penzias, Arno, 15
perihelion, 74
phase
Moon, 77
Venus, 47
photon, 10, 12, 42
photosphere, Sun, 4
lanet, 5, 40-41
extrasolar discovery, 61
formation,
inner, 4
regular movement, 83
observation, 8
outer, 40
remnant materials, 62
revolution, 40
See also under specific name, for example

Earth; Mars
planetary nebula, 1, 22, 23, 25, 26 planetesimal, 41
planisphere (star wheel), $86,88,89$ plasma, 43
plasma,
plate tectonics, Earth. 73
Pleiades, The (star formation), 21
Pluto, 5, 58-59
diameter, 60, 61
orbit, 58, 59, 60-61
polar star map, 86
Pope, Alexander, 55
positron, 11,42
precipitation, 69
protogalaxy 12
proton, 11, 12, 17, 42 protostar, 22
Ptolemy, Claudius, 4, 5, 82
pulsar, 19, 29, 31

Q

Quaoar, Kuiper belt objects, 60, 61
quark, $10,11,17$
quasar, 19, 34, 35

R

radiation, $10,11,12,29$
background, 11,15
solar, 41, 67, 71, 76
radio galaxy, 35
rain, 69
red giant (star), 23, 24, 25, 31
red planet: See Mars
red supergiant (star), 23, 24
relativity, general theory of 16,31
rewis, genes theory of,
rift, 72
rift, 72
right ascension, 87

ring system	solar wind, 43, 49, 51, 69	planetary nebulae, 26
Jupiter, 51	solstice, summer and winter, 74, 75	principal, within 100 light-years from Sun,
Neptune, 56	Sombrero Galaxy, 32-33	20-21
Saturn, 52	Sounds of Earth (Voyager recording), 83	red giant, $20,23,24,25,31$
Uranus, 55	space exploration, $44,47,48,49,55,56,64$,	red supergiant, $20,23,24$
	76, 83	reference points, 84
	space-time, 16	shooting, 62
	spatial dimension, 14	size, 22, 24, 26
	spectral class, stars, 20	stellar movement, 87
	spectrum, 21	stellar remnant, 29
Sagittarius A and B (gas clouds), 37	spicule, 43	study, 80
Saros period, eclipses, 79	spiral galaxy, 32,33	supergiant, 24, 28, 31
satellite, 5, 55, 56, 59	Spirograph Nebula (IC 418), 26	supernovae, 28-29
See also moon	spring tide, 76	superstition and ritua, 80
Saturn, 40, 52-53	star, 84-85	temperature, 20, 24
missions to, 83	black dwarf, 23, 24	white dwarf, 23, 24, 25, 26-27, 31
orbit, 60-61	blue, 20	See also Sun
Scorpius (region of space), 20-21	brightness, 20	star chart
Sedna, diameter, 61	calendar, 5, 82	celestial sphere, 86
self-generated universe, 15	celestial sphere, 86-87	equatorial, 87
Shakespeare, William, 55	chart: See star chart	measuring distances, 86
shooting star, 62, 89	color, 20	observer's latitude, 87
snow, 69	composition, 12, 20, 21, 29	polar, 87
solar eclipse, 78-79	constellations, 37, 74, 84-85, 88	reading a map of the sky, 87
solar flare, 43	convection cells, 24	stellar movements, 87
solar nebula, 72	core, $24,28,31$	stellar north pole, 86
solar prominence, 43	death, 24-25, 28, 29	stellar south pole, 87
solar radiation, 41, 67, 71, 76	distance from Earth, 20, 21	types, 87
Solar System, 5, 38-65	Doppler effect, 21	star wheel (planisphere), $86,88,89$
components, 39, 40-41	dust grains, 25	stargazing, 88-89
Earth, 39, 41, 66-67	end, 29	auxiliary telescope, 90
Eris, 61	final darkness, 30-31	basics, 88
formation, 13	formation, 12, 22-23, 28, 34	binoculars, 88
inner planets, 41	gas shells, 26-27	comets, 89
Jupiter, 40, 41, 50-51	groups, 5,21	flat perspective, 89
Mars, 39, 41, 48-49	Hertzsprung-Russell diagram, 20, 24, 25	history, 82-83
Mercury, 41, 44-45	hot spots, 25	instruments for, 82
Neptune, 40, 56-57	life cycle, 22-23, 24-25, 26, 28, 30	measuring direction, 89
origin, 60	luminosity, 20-21, 24, 25	moon, 88, 89
outer planets, 40	main sequence, 20	motion of constellations, 88
Pluto, 5, 58-59	maximum mass, 26	night sky, 88
Saturn, 40, 52-53	navigation, 5	observable objects, 88
"Termination Shock" region, 83	near, 8	observatories, 80-81, 90-91
Uranus, 40, 54-55	origin, 22-23	recognizing objects, 88,89
Venus, 41, 46-47	parallax, 21	satellites, 89

ring system Jupiter, 51
 Jupiter, 51 Neptune, 56
 Neptune, 56 Saturn, 52
 Uranus, 55

agittarius A and B (gas clouds), 3
Saros period, eclipses, 79
satelite, $5,55,56$,
See also moon
Saturn, 40, 52-53 orbit, 60-61
Scorpius (region of spater, 61
self-generated universe, 15
hooting star, 62,89
now, 69
solar eclipse, 8-79
solar flare, 43
solar nebula, 72
solar prominence, 43
Solar Syiation, $41,67,71,7$
components, 39, 40-4
Earth, 39, 41, 66-67
Eris, 61
inner planets, 41 Jupiter, 40, 41, 50-51 Mercury, 41, 44-45 Neptune, 40, 56-57
origin, 60
Pluto, 5, 58-59
Saturn, 40, 52-53
"Termination Shock" region, 83
Venus, 41, 46-47
solar wind, 43, 49, 51, 69
solstice, summer and wint
Sombrero Galaxy, $32-33$
Sounds of Earth (Voyager recording) 83
space exploration, 44, 47, 48, 49, 55, 56, 64,
space-time, 16
spatial dimension, 14
spectrum, 21
spicile,
spiral galaxy, 32,
Spirograph Nebula (IC 418), 26
spring tide, 76
star, $84-85$
black dw
blue, 20
brightness, 20
celestial sphere, 86-87
chart: See star chart
color, 20
constation, 12, 20, 21, 29
convection cells, 24
death, 24-25, 28, 29
distance from Earth, 20, 21
dust grains, 25
end, 29
formation, 12, 22-23, 28, 3
gas shells, 26-27
Hertzsprung-Russell diagram, 20, 24, 25
hot spots, 25
ife cycle, 22-23, 24-25, 26, 28, 30
luminosity, 20-21, 24,
maximum mass 26
navigation, 5
origin, 22-23
parallax, 21
planetary nebulae, 26
nipal, within 100 light-years from Sun,
red giant, $20,23,24,25,31$
red supergiant, 20, 23, 2
eference points, 84
ooting, 62
stellar movement, 87
stellar remnant, 29
study, 80
supernovae, 28-29
superstition and ritual, 80
White dwarf, 23, 24, 25, 26-27, 31
See also S
celestial sphere, 86
measuring distances, 86
observer's latitude, 87
reading a map of the sky, 87
stellar movements, 87
stellar north pole, 86
types, 87
targazing, 88-89
auxiliary telescope, 9
basics, 88
comets, 89
flat perspective, 89
istory, 82-83
neasuring direction, 89
moon, 88, 89
otion of constellations, 88
ght sky, 88
observatories, 80-81, 90-91
satellites, 89
shooting stars, 89
supplies, 88
supplies, 88
telescope, 88
unaided eye, 88
Venus, 89
Very Large Telescope, 90-9
stellar map, 5, 86-87
stellar wind, 25
Stonehenge (United Kingdom), 80-81, 90-91
stony meteorite, 62
strong nuclear force (strong nuclea
interaction), 11, 16, 17
subatomic particle, 10
subduction, 72
Sun (Earth's), 22, 42-43
ancient peoples, 38
astronomical theories, 82,83
convective zone, 42
core, 43
corona, 43
distance to earth, 78
eclipses, 78-79
essential data, 42
essential data, 42
formation, 13,72
future, 25
gravitational pull, 31, 40, 41
luminosity, 20
photosphere, 43
radiation, $41,67,71,76$
radiative zone, 4
size, 31, 78
surface and atmosphere, 43
sunspot, 43,83
supercluster (galaxy), 9 ,
supergiant (star), 28, 31
supernova, 12, 19, 22, 23, 26, 28-29

T

tectonic plate, 72,73
telescope, 4,82
auxiliary, 90
auxiliary,

Galileo, 5, 36, 83
Hubble Space Telescope, 55
object position, 17
parts, 88-89
Very Large Telescope, 90-91
visible matter, $5,12,20,30,34,52,56$
temperature
black holes, 35
stars, 20,24
temporal dimension, 14
Termination Shock (solar system region), 83
thermonuclear fusion, 42
tide, 51, 76
time, 16,17
curvature of space-time, 16,31
Greenwich median, 75
measurement, 74,82
zone, 75
total eclipse
lunar, 79
solar, 78
umbra, 43, 78
universal gravitation, theory of, 16,17
universe
background radiation, 11,15
composition, 8-9, 14
cooling, 12
Creation, 10-11
curvature of space-time,
curvature of space-tim
defined, $6-7,18-19$
defined, 6-7, 18-19
expansion, $7,8,10,11,13,16,32,83$
expansion, $7,8,10,11,13,16$
expansion theories
forces, $11,16-17$
future 14
geocentric model. 82
geocentric model, 82
heliocentric
history, 13
observation ,80-81, 90-91
observation, 80
secrets, 4-5
secrets, 4-5
size/immensity, 8
transparent, 12-13
Uranus, 40, 54-55 orbit, 60-61

V

Valles Marineris canyon, Mars, 49
Van Allen belts, Earth, 69
Venus, 41, 46-47, 89
Very Large Telescope (VLT), 81, 90-91
auxiliary telescope, 90
dome, 90
optics, 90,91
photograph, 90-91
volcanism, 41, 47, 49, 77

W

water, $44,46,48,61,68,71$
weak, light particle (WIMP), 17
weak nuclear force (weak nuclear
interaction), $11,16,17$
weight, relation to gravity, 69
white dwarf (star), 23, 25, 26-27, 31
Wilson, Robert, 15
wind, 51,5
WMAP (Wilkinson Microwave Anisotropy
Probe) project, 11
wormhole, 31
X-Z
X-ray, black holes, 30
zero time, 10
zodiac , 10

UNIVERSE

Britannica llustrated
Science Library

[^0]: ARMIILAR
 SPHeRE
 Invented by
 Eratosthenes in the
 year 225 Bc, it was used as a teaching
 aid and berame aid and became
 especially popular in especially popular
 the Middle Ages
 thanks to Danish the Midade Ages
 thanks to Danish
 astronomer Tycho Batronom

